Skip to main content
Log in

Waterborne etherified MF and PVAc hybrid resin containing nanoclay as intumescent flame-retardant plywood coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The flame retardancy of waterborne intumescent coatings for plywood has been investigated. Different concentrations (1%, 3%, 5%, and 10%) of organoclay (Cloisite 15A) were added to a hybrid (etherified melamine formaldehyde and polyvinyl acetate) resin to generate coatings. The CO and CO2 emissions from the coatings during combustion were determined. An intumescent coating containing organoclay exhibited superior flame-retardant properties than does the pure hybrid resin. By comparing the performance of intumescent coatings prepared using organoclay and unmodified clay, it has been demonstrated that coatings contain the modified clay that have better flame-retardant properties. The presence of organoclay in the coating promotes the formation of an ideal char layer during combustion when the concentration is 3%. Intumescent coatings containing organoclay undergo combustion with lower CO emissions, but greater CO2 emission. 13C, 27Al, and 31P solid-state nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy were used to determine the chemical structure of the char layers to determine the mechanism underlying char formed upon combustion and delineate the process of char degradation. Based on the observed flammability and CO/CO2 emission, intumescent coatings containing 3% or 5% organoclay display a greater reduction in flammability than do coatings containing higher concentrations of the organoclay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BR:

Binder resin

CS:

Carbonizing substance

FPS:

Foam producing substance

DA:

Dehydrating agent

FR2:

Flame retardant without organoclay

FRmt :

Flame retardant with 5% montmorillonite without modification

FRoc1:

Flame retardant with 1% Cloisite 15A

FRoc3:

Flame retardant with 3% Cloisite 15A

FRoc5:

Flame retardant with 5% Cloisite 15A

FRoc10:

Flame retardant with 10% Cloisite 15A

THR:

Total heat release

Time to PHRR:

Time to peak heat release rate

References

  1. Biswas, B, Kandola, BK, Horrocks, AR, Price, D, “A Quantitative Study of Carbon Monoxide and Carbon Dioxide Evolution During Thermal Degradation of Flame Retarded Epoxy Resins.” Polym. Degrad. Stab., 92 765–776 (2007)

    Article  CAS  Google Scholar 

  2. Li, ZS, Wang, HJ, Zhang, S, “Smoke Density Evaluation of Acrylic Resin and Intumescent Flame Retardant Coatings.” Pigment Resin Technol., 45 86–92 (2016)

    Article  CAS  Google Scholar 

  3. Wang, B, Zhang, Y, Tao, YJ, Zhou, Z, Song, L, Jie, G, Hu, Y, “Monitoring the Degradation of Physical Properties and Fire Hazards of High-Impact Polystyrene Composite with Different Ageing Time in Natural Environments.” J. Hazard. Mater., 352 92–100 (2018)

    Article  CAS  Google Scholar 

  4. Dong, X, Yang, J, Hua, X, Nie, S, Kong, F, “Synthesis of a Novel Char-Forming Agent (PEIC): Improvement in Flame Retardancy, Thermal Stability, and Smoke Suppression for Intumescent Flame-Retardant Polypropylene Composites.” J. Appl. Polym. Sci., 137 48296 (2020)

    Article  CAS  Google Scholar 

  5. Samyn, F, Bourbigot, S, “Thermal Decomposition of Flame Retarded Formulations PA6/Aluminum Phosphinate/Melamine Polyphosphate/Organomodified Clay: Interactions Between the Constituents?” Polym. Degrad. Stab., 97 2217–2230 (2012)

    Article  CAS  Google Scholar 

  6. Girardin, B, Fontaine, G, Duquesne, S, Forsth, M, Bourbigot, S, “Measurement of Kinetics and Thermodynamics of the Thermal Degradation for Flame Retarded Materials: Application to EVA/ATH/NC.” J. Anal. Appl. Pyrolysis, 124 130–148 (2017)

    Article  CAS  Google Scholar 

  7. Duquesne, S, Magnet, S, Jana, C, Delobel, R, “Thermoplastic Resins for thin Film Intumescent Coatings - Towards a Better Understanding of Their Effect on Intumescence Efficiency.” Polym. Degrad. Stab., 88 63–69 (2005)

    Article  CAS  Google Scholar 

  8. Bourbigot, S, Le Bras, M, Delobel, R, Decressaing, R, Amourex, JP, “Synergistic Effect of Zeolite in an Intumescence Process: Study of the Carbonaceous Structures Using Solid-State NMR.” J. Chem. Soc. Faraday Trans., 92 149–158 (1996)

    Article  CAS  Google Scholar 

  9. Kiliaris, P, Papaspyrides, CD, Pfaendner, R, “Polyamide 6 Composites with Melamine Polyphosphate and Layered Silicates: Evaluation of Flame Retardancy and Physical Properties.” Macromolecular Materials and Engineering, 296 617–629 (2011)

    Article  CAS  Google Scholar 

  10. Hassan, MA, Kozlowski, R, Obidzinski, B, Shehata, AB, Abdel Aziz, F, “The Effect of New Flame Retardant Systems Containing Montmorillonite-Butyl Acrylate Nanoclay on the Flammability Properties of Polyuerethane Polymer.” Polym. Plast. Technol. Eng., 46 521–527 (2007)

    Article  CAS  Google Scholar 

  11. Bourbigot, S, Samyn, F, Turf, T, Duquesne, S, “Nanomorphology and Reaction to Fire of Polyurethane and Polyamide Nanocomposites Containing Flame Retardants.” Polym. Degrad. Stab., 95 320–326 (2010)

    Article  CAS  Google Scholar 

  12. Alongi, J, Han, Z, Bourbigot, S, “Intumescence: Tradition Versus Novelty. A Comprehensive Review.” Prog. Polym. Sci., 51 28–73 (2015)

    Article  CAS  Google Scholar 

  13. Chuang, CS, Tsai, KC, Wang, YC, Wang, MK, Ko, CH, “Impact of Wetting and Drying Cycle Treatment of Intumescent Coatings on the Fire Performance of Thin Painted Red Lauan (Parashorea sp.) Plywood.” J. Wood Sci., 56 208–215 (2010)

    Article  CAS  Google Scholar 

  14. Chuang, CS, Tsai, KC, Wang, MK, Ou, CC, Ko, CH, Shiau, IL, “Effects of Intumescent Formulation for Acrylic-Based Coating on Flame-Retardancy of Painted Red Lauan ( Parashorea spp.) thin plywood.” Wood Sci. Technol., 42 593–607 (2008)

    Article  CAS  Google Scholar 

  15. Chuang, CS, Wu, CY, Wu, KC, Sheen, HJ, “Flame Retardancy of Water-Based Intumescent Coatings with Etherified Melamine-Formaldehyde and Polyvinyl Acetate Copolymer Hybrid Resin.” J. Appl. Polym. Sci., 137 e49279 (2020)

    Article  Google Scholar 

  16. Xiao, Z, Liu, S, Zhang, Z, Mai, C, Xie, Y, Wang, Q, “Fire Retardancy of an Aqueous, Intumescent, and Translucent Wood Varnish Based on Guanylurea Phosphate and Melamine-Urea-Formaldehyde Resin.” Prog. Org. Coat., 121 64–72 (2018)

    Article  CAS  Google Scholar 

  17. Wang, F, Zhang, Z, Wang, Q, Tang, J, “Fire-Retardant and Smoke-Suppressant Performance of an Intumescent Waterborne Amino-Resin Fire-Retardant Coating for Wood.” Front. For. China, 3 487–492 (2008)

    Article  Google Scholar 

  18. Chuang, CS, Fan, YJ, Sheen, HJ, “Flame Retardancy Effects on Intumescent Coatings with Vinyl Acetate Copolymers.” Int. Polym. Process., 34 541–550 (2019)

    Article  CAS  Google Scholar 

  19. Pimenta, JT, Concalves, C, Hiliou, L, Coelho, JFJ, Magalhars, FD, “Effect of Binder on Performance of Intumescent Coatings.” J. Coat. Technol. Res., 13 227–238 (2016)

    Article  CAS  Google Scholar 

  20. Chuang, CS, Sheen, HJ, “Effects of Added Nanoclay for Styrene-Acrylic Resin on Intumescent Fire Retardancy and CO/CO2 Emission.” J. Coat. Technol. Res., 17 115–125 (2020)

    Article  CAS  Google Scholar 

  21. Ribeiro, SPD, Estevao, LRD, Nascimento, RSV, “Effect of Clays on the Fire-Retardant Properties of a Polyethylenic Copolymer Containing Intumescent Formulation.” Sci. Technol. Adv. Mater., 9 1–7 (2008)

    Article  Google Scholar 

  22. Chuang, CS, Tsai, KC, Yang, TH, Ko, CH, Wang, MK, “Effects of Adding Organo-Clays for Acrylic-Based Intumescent Coating on Fire-Retardancy of Painted Thin Plywood.” Appl. Clay Sci., 53 709–715 (2011)

    Article  CAS  Google Scholar 

  23. Anees, SM, Dasari, A, “A Review on the Environmental Durability of Intumescent Coatings for Steels.” J. Mater. Sci., 53 124–145 (2018)

    Article  CAS  Google Scholar 

  24. Camino, G, Costa, L, Martinasso, G, “Intumescent Fire-Retardant Systems.” Polym. Degrad. Stab., 23 359–376 (1989)

    Article  CAS  Google Scholar 

  25. Dasari, A, Yu, ZZ, Cai, GP, Mai, YW, “Recent Developments in the Fire Retardancy of Polymeric Materials.” Prog. Polym. Sci., 38 1357–1387 (2013)

    Article  CAS  Google Scholar 

  26. Puri, RG, Khanna, AS, “Intumescent Coatings: A Review on Recent Progress.” J. Coat. Technol. Res., 14 1–20 (2017)

    Article  CAS  Google Scholar 

  27. Chozhan, CK, Rajasekaran, R, Alagar, M, Gnanasundaram, P, “Thermomechanical Behavior of Vinyl Ester Oligomer-Toughened Epoxy-Clay Hybrid Nanocomposites.” Int. J. Polym. Mater., 57 319–337 (2008)

    Article  CAS  Google Scholar 

  28. Shiralizadeh, S, Nasr-Isfahani, H, Keivanloo, A, Bakherad, M, “Radiopaque Nanocomposites Based on Biocompatible Iodinated N-Phenyl Amide-Modified Methyl Methacrylate/Acrylic Acid Copolymer.” J. Polym. Res., 24 186 (2017)

    Article  Google Scholar 

  29. Zhao, L, Zhang, JL, Wang, L, Li, JK, Feng, T, Fan, JC, Chen, LX, Gu, JW, “Superior Wave-Absorbing Performances of Silicone Rubber Composites via Introducing Covalently Bonded SnO2@MWCNT Absorbent with Encapsulation Structure.” Compos. Commun., 22 100486 (2020)

    Article  Google Scholar 

  30. Tang, L, Zhang, JL, Gu, JW, “Random Copolymer Membrane Coated PBO Fibers with Significantly Improved Interfacial Adhesion for PBO Fiber/Cyanate Ester Composites.” Chin. J. Aeronaut., 34 659–668 (2021)

    Article  Google Scholar 

  31. Huang, S, Wang, L, Li, YC, Liang, CB, Zhang, JL, “Novel Ti3C2Tx MXene/Epoxy Intumescent Fire-Retardant Coatings for Ancient Wooden Architectures.” J. Appl. Polym. Sci., 138 e50649 (2021)

    Article  Google Scholar 

  32. Lotsch, BV, Schnick, W, “New Light on an Old Story: Formation of Melam During Thermal Condensation of Melamine.” Chem. Eur. J., 13 4956–4968 (2007)

    Article  CAS  Google Scholar 

  33. Liu, X, Hao, JW, Gaan, S, “Recent Studies on the Decomposition and Strategies of Smoke and Toxicity Suppression for Polyurethane Based Materials.” RSC Adv., 6 74742–74756 (2016)

    Article  CAS  Google Scholar 

  34. Gao, L, Zheng, G, Zhou, Y, Hu, L, Feng, G, Xie, Y, “Synergistic Effect of Expandable Graphite, Melamine Polyphosphate and Layered Double Hydroxide on Improving the Fire Behavior of Rosin-Based Rigid Polyurethane Foam.” Ind. Crops Prod., 50 638–647 (2013)

    Article  CAS  Google Scholar 

  35. Wladyka-Przbylak, M, Kozlowski, R, “The Thermal Characteristics of Different Intumescent Coatings.” Fire Mater., 23 33–43 (1999)

    Article  Google Scholar 

  36. Chen, XL, Song, WK, Liu, JB, Jiao, CM, Qian, Y, “Synergistic Flame-Retardant Effects Between Aluminum Hypophosphite and Expandable Graphite in Silicone Rubber Composites.” J. Therm. Anal. Calorim., 120 1819–1826 (2015)

    Article  CAS  Google Scholar 

  37. Le Bras, M, Bourbigot, S, Revel, B, “Comprehensive Study of the Degradation of an Intumescent EVA-Based Material During Combustion.” J. Mater. Sci., 34 5777–5782 (1999)

    Article  Google Scholar 

  38. Rimez, B, Rahier, H, Biesemans, M, Bourbigot, S, Van Mele, B, “Flame Retardancy and Degradation Mechanism of Poly(vinyl acetate) in Combination with Intumescent Flame Retardants: I. Ammonium Poly(phosphate).” Polym. Degrad. Stab., 121 321–330 (2015)

    Article  CAS  Google Scholar 

  39. Rimez, B, Rahier, H, Biesemans, M, Bourbigot, S, Van Mele, B, “Modelled Decomposition Mechanism of Flame Retarded Poly(vinyl acetate) by Melamine Isocyanurate.” J. Therm. Anal. Calorim., 127 2315–2324 (2017)

    Article  CAS  Google Scholar 

  40. Jiang, Z, Liu, G, “Microencapsulation of Ammonium Polyphosphate with Melamine-Formaldehyde-tris(2-hydroxyethyl)isocyanurate Resin and Its Flame Retardancy in Polypropylene.” RSC Adv., 5 88445–88455 (2015)

    Article  CAS  Google Scholar 

  41. Yan, L, Xu, Z, Wang, X, “Influence of Nano-silica on the Flame Retardancy and Smoke Suppression Properties of Transparent Intumescent Fire-Retardant Coatings.” Prog. Org. Coat., 112 319–329 (2017)

    Article  CAS  Google Scholar 

  42. Bourbigot, S, Sarazin, J, Samyn, F, Jimenez, M, “Intumescent Ethylene-Vinyl Acetate Copolymer: Reaction to Fire and Mechanistic Aspects.” Polym. Degrad. Stab., 161 235–244 (2019)

    Article  CAS  Google Scholar 

  43. Bourbigot, S, Le Bras, M, Dabrowski, F, Gilman, JW, Kashiwagi, T, “PA-6 Clay Nanocomposite Hybrid as Char Forming Agent in Intumescent Formulations.” Fire Mater., 24 201–208 (2000)

    Article  CAS  Google Scholar 

  44. Kandola, BK, Horrocks, AR, “Complex Char Formation in Flame-Retarded Fibre-Intumescent Combinations. II. Thermal Analytical Studies.” Polym. Degrad. Stab., 54 289–303 (1996)

    Article  CAS  Google Scholar 

  45. Lookman, R, Grobet, P, Merckx, R, Vlassak, K, “Phosphate Sorption by Synthetic Amorphous Aluminum Hydroxides-Al-27 Solid-State MAS NMR-Spectroscopy Study.” Eur. J. Soil Sci., 45 37–44 (1994)

    Article  CAS  Google Scholar 

  46. Maciel, GE, Sullivan, MJ, Petrakis, L, Grandy, DW, “13C Nuclear Magnetic Resonance Characterization of Coal Macerals by Magic-Angle Spinning.” Fuel, 61 411–414 (1982)

    Article  CAS  Google Scholar 

  47. Ribeiro, SPD, Martins, RC, Cescon, LD, Estevao, LRD, Nascimento, MAC, Nascimento, RSV, “NMR Evaluation of Montmorillonite’s d-Spacings on the Formation of Phosphocarbonaceous Species in Intumescent Systems.” J. Appl. Polym. Sci., 136 48053 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support (MOST 108-2811-E-002-542 and 108-2221-E-002-052) from Ministry of Science and Technology of Taiwan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horn-Jiunn Sheen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4197 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, CS., Wu, KC. & Sheen, HJ. Waterborne etherified MF and PVAc hybrid resin containing nanoclay as intumescent flame-retardant plywood coatings. J Coat Technol Res 20, 843–856 (2023). https://doi.org/10.1007/s11998-021-00607-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00607-5

Keywords

Navigation