Skip to main content
Log in

Modelled decomposition mechanism of flame retarded poly(vinyl acetate) by melamine isocyanurate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Model polymer poly(vinyl acetate) (PVAc) was combined with melamine isocyanurate (MIC) as intumescent flame retardant composite. This work emphasises on the study of the decomposition mechanism and compared with a single fire test in order to show its performance as flame retarded composite. As such, mass loss cone calorimetry tests were performed and compared with it inert and oxidative decompositions in lab tests. PVAc/MIC composites cannot be ignited with high loadings MIC. Difference curves in oxidative conditions revealed that the composites with MIC show only positive differences, indicating a high stabilisation, especially in the temperature region of a mild flame (500–700 °C). Experiments performed with TG coupled with mass spectroscopy and analyses on partially degraded residues with solid-state 13C-NMR enabled the construction of the complete decomposition mechanism. MIC has both a heat-sink FR activity as well as a crosslinking role in the stabilization of the polymer. The latter then creates a highly stabilised char at elevated temperatures in oxidative environments. The formed char starts to degrade only 100 °C higher than the pure polymer within a heating. The degradation of formed char of pure PVAc is autocatalytic; this behaviour disappears upon addition of sufficient amount of MIC. Therefore, the transport of fuel towards the gaseous phase is limited, creating an efficient flame retardant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Troitzsch J, editor. plastics flammability handbook. 3rd ed. Munich: Carl Hanser; 2003.

    Google Scholar 

  2. Bugajny M, Le Bras M, Bourbigot S. Thermoplastic polyurethanes as carbonization agents in intumescent blends. Part 2: thermal behavior of polypropylene/thermoplastic polyurethane/ammonium polyphosphate blends. J Fire Sci. 2000;18:7–27.

    Article  CAS  Google Scholar 

  3. Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol Mater Eng. 2004;289:499–511.

    Article  CAS  Google Scholar 

  4. Giraud S, Bourbigot S, Rochery M, Vroman I, Tighzert L, Delobel R, Poutch F. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym Degrad Stabil. 2005;88:106–13.

    Article  CAS  Google Scholar 

  5. Levchik SV, Weil ED. Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int. 2005;54:981–98.

    Article  CAS  Google Scholar 

  6. Wang JQ, Chow WK. A brief review on fire retardants for polymeric foams. J Appl Polym Sci. 2005;97:366–76.

    Article  CAS  Google Scholar 

  7. Liang H, Asif A, Shi W. Photopolymerization and thermal behavior of phosphate diacrylate and triacrylate used as reactive-type flame-retardant monomers in ultraviolet-curable resins. J Appl Polym Sci. 2005;97:185–94.

    Article  CAS  Google Scholar 

  8. Flambard X, Bourbigot S, Kozlowski R, Muzyczek M, Mieleniak B, Ferreira M, Vermeulen B, Poutch F. Progress in safety, flame retardant textiles and flexible fire barriers for seats in transportation. Polym Degrad Stabil. 2005;88:98–105.

    Article  CAS  Google Scholar 

  9. Bugajny M, Bourbigot S, Le Bras M, Delobel R. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polym Int. 1999;48:264–70.

    Article  CAS  Google Scholar 

  10. Camino G, Luda PM, Costa L. Developments in intumescent fire-retardant systems—ammonium polyphosphate-poly(ethyleneurea formaldehyde) mixtures. ACS Symp Ser. 1995;599:76–90.

    Article  CAS  Google Scholar 

  11. Zaikov GE, Lomakin SM. Ecological issue of polymer flame retardancy. J Appl Polym Sci. 2002;86:2449–62.

    Article  CAS  Google Scholar 

  12. Duquesne S, Delobel R, Le Bras M, Camino G. A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane. Polym Degrad Stabil. 2002;77:333–44.

    Article  CAS  Google Scholar 

  13. Chen X, Cai X. Synthesis of poly(diethylenetriamine terephthalamide) and its application as a flame retardant for ABS. J Therm Anal Calorim. 2016;125:313–20.

    Article  CAS  Google Scholar 

  14. Zhou X, Ran S, Hu H, Fang Z. Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites. J Therm Anal Calorim. 2016;125:199–204.

    Article  CAS  Google Scholar 

  15. Xiao X, Hu S, Zhai J, Chen T, Mai Y. Thermal properties and combustion behaviors of flame-retarded glass fiber-reinforced polyamide 6 with piperazine pyrophosphate and aluminum hypophosphite. J Therm Anal Calorim. 2016;125:175–85.

    Article  CAS  Google Scholar 

  16. Rimez B, Rahier H, Van Assche G, Artoos T, Biesemans M, Van Mele B, Rimez HG. The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate). Part I: experimental study of the degradation mechanisms. Polym Degrad Stabil. 2008;93:800–10.

    Article  CAS  Google Scholar 

  17. Rimez B, Rahier H, Van Assche G, Artoos T, Van Mele B. The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part II: Modelling the degradation kinetics. Polym Degrad Stabil. 2008;93:1222–30.

    Article  CAS  Google Scholar 

  18. Mosnacek J, Basfar A, Shukri T, Bahattab M. Poly(ethylene vinyl acetate) (EVA)/low density polyethylene (LDPE)/ammonium polyphosphate (APP) composites cross-linked by dicumyl peroxide for wire and cable applications. Polym J. 2008;40:460–4.

    Article  CAS  Google Scholar 

  19. Simon P. Polymer degradation by elimination of small molecules. Angew Makromol Chem. 1994;216:187–203.

    Article  CAS  Google Scholar 

  20. Riva A, Camino G, Fomperie L, Amigouët P. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym Degrad Stabil. 2003;82:341–6.

    Article  CAS  Google Scholar 

  21. Zanetti M, Camino G, Thomann R, Mülhaupt R. Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer. 2001;42:4501–7.

    Article  CAS  Google Scholar 

  22. Bourbigot S, Turf T, Bellayer S, Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stabil. 2009;94:1230–7.

    Article  CAS  Google Scholar 

  23. Gijsman P, Steenbakkers R, Fürst C, Kersjes J. Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66. Polym Degrad Stabil. 2002;78:219–24.

    Article  CAS  Google Scholar 

  24. Weil ED, Levchik S. A review of current flame retardant systems for epoxy resins. J Fire Sci. 2004;22:251–65.

    Article  CAS  Google Scholar 

  25. Wu K, Wang Z, Hu Y. Microencapsulated ammonium polyphosphate with urea–melamine–formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:1118–25.

    Article  CAS  Google Scholar 

  26. Zhang M, Zhang J, Chen S, Zhou Y. Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym Degrad Stabil. 2014;110:27–34.

    Article  CAS  Google Scholar 

  27. Yang W, Lu H, Tai Q, Qiao Z, Hu Y, Song L, Yuen R. You have full text access to this contentFlame retardancy mechanisms of poly(1,4-butylene terephthalate) containing microencapsulated ammonium polyphosphate and melamine cyanurate. Polym Adv Technol. 2011;22:2136–44.

    Article  CAS  Google Scholar 

  28. Lim W, Mariatti M, Chow W, Mar K. Effect of intumescent ammonium polyphosphate (APP) and melamine cyanurate (MC) on the properties of epoxy/glass fiber composites. Compos B Eng. 2012;43:124–8.

    Article  Google Scholar 

  29. Rimez B, Rahier H, Biesemans M, Bourbigot S, Van Mele B. Flame retardancy and degradation mechanism of poly(vinyl acetate) in combination with intumescent flame retardants: I. Ammonium poly(phosphate). Polym Degrad Stabil. 2015;121:321–30.

    Article  CAS  Google Scholar 

  30. Checchin M, Cecchini C, Cellarosi B, Sam FO. Use of cone calorimeter for evaluating fire performances of polyurethane foams. Polym Degrad Stabil. 1999;64:573–6.

    Article  CAS  Google Scholar 

  31. Jash P, Wilkie CA. Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym Degrad Stabil. 2005;88:401–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The company TA Instruments Ltd is kindly acknowledged for the use of the TG–MS equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rimez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimez, B., Rahier, H., Biesemans, M. et al. Modelled decomposition mechanism of flame retarded poly(vinyl acetate) by melamine isocyanurate. J Therm Anal Calorim 127, 2315–2324 (2017). https://doi.org/10.1007/s10973-016-5783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5783-1

Keywords

Navigation