Skip to main content
Log in

Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main aim of this work was to investigate the synergistic effect of expandable graphite (EG) and aluminum hypophosphite (AHP) on the flame retardancy of silicone rubbers (SR). The synergistic effects of EG with AHP in halogen-free flame-retardant SR composites have been studied by cone calorimeter test (CCT), thermogravimetric analysis (TG), and the thermogravimetric analysis/infrared spectrometry (TG–IR). The CCT results showed that AHP and EG can effectively reduce the flammable properties including peak heat release rate, total heat release, smoke production rate, total smoke release, and smoke factor. An improvement of thermal stability of SR/AHP/EG was also observed. The experimental observations from digital photographs give positive evidence of the synergistic effects between AHP with EG. The TG results reveal that SR/AHP/EG samples show slower thermal degradation rate and higher thermal stability at high temperature than SR sample. The TG–IR results showed that the addition of AHP and EG significantly decreased the combustible gaseous products such as hydrocarbons. These attractive features of SR/AHP/EG suggest that the method proposed herein is a good approach to prepare very effective flame retardants and corresponding super flame-retarding SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jana R, Nando G, Khastgir D. Compatibilised blends of LDPE and PDMS rubber as effective cable insulants. Plast, Rubber Compos. 2003;32:1.

    Article  Google Scholar 

  2. Wang J, Chen Y, Jin Q. Preparation and characteristics of a novel silicone rubber nanocomposite based on organophilic montmorillonite. High Perform Polym. 2006;18:325–40.

    Article  CAS  Google Scholar 

  3. Chiu H, Wu J. Conductive effect of an electronic/ionic complex conductivity modifier for silicone elastomers. J Mater Sci. 2005;97:711–20.

    CAS  Google Scholar 

  4. Janowska G, Kucharska-Jastrza˛bek A, Rybin´ski P. Thermal stability, flammability and fire hazard of butadiene–acrylonitrile rubber nanocomposites. J Therm Anal Calorim. 2011;103:1039–46.

    Article  CAS  Google Scholar 

  5. Chen XL, Jiao CM, Zhang J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104:1037–43.

    Article  CAS  Google Scholar 

  6. Chen L, Wang Y. A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol. 2009;21:1–26.

    Google Scholar 

  7. Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, Wit C. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int. 2011;37:532–56.

    Article  CAS  Google Scholar 

  8. Duquesne S, Bras M, Bourbigot S, Delobel R, Vezin H, Camino G, Eling B, Lindsay C, Roels T. Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 2003;27:103–17.

    Article  CAS  Google Scholar 

  9. Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polym Degrad Stab. 2002;77(2):195–202.

    Article  CAS  Google Scholar 

  10. Xie R, Qu B. Thermo-oxidative degradation behaviors of expandable graphite-based intumescent halogen-free flame retardant LLDPE blends. Polym Degrad Stab. 2001;71:395–402.

    Article  CAS  Google Scholar 

  11. Duquesne S, Delobel R, Bras M, Camino G. A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane. Polym Degrad Stab. 2002;77(2):333–44.

    Article  CAS  Google Scholar 

  12. Meng X, Ye L, Zhang X, Tang P, Tang J, Ji X, Li Z. Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams. J Appl Polym Sci. 2009;114(2):853–63.

    Article  CAS  Google Scholar 

  13. Xu Y, Chen M, Ning X. Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite. J Therm Anal Calorim. 2014;115:689–95.

    Article  CAS  Google Scholar 

  14. Yang W, Song L, Hu Y, Lu H, Yuen R. Enhancement of fire retardancy performance of glass-fibre reinforced poly (ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate. Compos Part B Eng. 2011;42:1057–65.

    Article  Google Scholar 

  15. Wu WH, Lv SF, Liu X, Qu HQ, Zhang HC, Xu JZ. Using TG-FTIR and TG-MS to study thermal degradation of metal hypophosphites. J Therm Anal Calorim. 2014;118:1569–75.

    Article  CAS  Google Scholar 

  16. Yang W, Yuen R, Hu Y, Lu H, Song L. Development and characterization of fire retarded glass-fiber reinforced poly (1,4-butylene terephthalate) composites based on a novel flame retardant system. Ind Eng Chem Res. 2011;50:11975–81.

    Article  CAS  Google Scholar 

  17. Zhao B, Hu Z, Chen L, Liu Y, Liu Y, Wang Y. A phosphorus-containing inorganic compound as an effective flame retardant for glass-fiber-reinforced polyamide 6. J Appl Polym Sci. 2011;119(4):2379–85.

    Article  CAS  Google Scholar 

  18. Tang G, Wang X, Xing W, Zhang P, Wang B, Hong N, Yang W, Hu Y, Song L. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res. 2012;51:12009–16.

    Article  CAS  Google Scholar 

  19. Modesti M, Lorenzetti A, Hrelja S, Semenzato S, Bertani R, Michelin R. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams. Polym Degrad Stab. 2008;93(12):2166–71.

    Article  CAS  Google Scholar 

  20. Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B, Modesti M. Phosphinates and layered silicates in charring polymers: the flame retardancy action in polyurethane foams. Polym Degrad Stab. 2013;98(11):2366–74.

    Article  CAS  Google Scholar 

  21. Scharte B, Hull T. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007;31(5):327–54.

    Article  Google Scholar 

  22. Gilman J, Jackson C, Morgan A, Harris R. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12(7):1866–73.

    Article  CAS  Google Scholar 

  23. Wang L, Jiang J, Jiang P, Yu J. Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber. J Polym Res. 2010;17(6):891–902.

    Article  CAS  Google Scholar 

  24. Cogen J, Lin T, Lyon R. Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds. Fire Mater. 2009;33(1):33–55.

    Article  CAS  Google Scholar 

  25. Yang H, Wang X, Song L, Yu B, Yuan Y, Hu Y, Yuen R. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams. Polym Adv Technol. 2014;25(9):1034–43.

    Article  CAS  Google Scholar 

  26. Lin M, Li B, Li Q, Li S, Zhang S. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci. 2011;121(4):1951–60.

    Article  CAS  Google Scholar 

  27. Almeras X, Bras M, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab. 2003;82(2):325–31.

    Article  CAS  Google Scholar 

  28. Jiao C, Chen X. Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci. 2010;50(4):767–72.

    Article  CAS  Google Scholar 

  29. Ricciardi M, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36(3):203–15.

    Article  CAS  Google Scholar 

  30. Cross M, Cusack P, Hornsby P. Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene–vinyl acetate copolymer. Polym Degrad Stab. 2003;79(2):309–18.

    Article  CAS  Google Scholar 

  31. Nazaré S, Kandola B, Horrocks A. Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire Mater. 2002;26(4–5):191–9.

    Article  Google Scholar 

  32. Coudreuse A, Noireaux P, Noblat R, Basfar A. Influence of radiation crosslinking and nano-filler on the flammability of ethylene vinyl acetate and low density polyethylene blends for wire and Cable applications. J Fire Sci. 2010;28:497–507.

    Article  CAS  Google Scholar 

  33. Jiao C, Chen X, Zhang J. Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites. J Fire Sci. 2009;27:465.

    Article  CAS  Google Scholar 

  34. Chen XL, Jiao CM, Zhang J. Thermal and combustion behavior of ethylene–vinyl acetate/aluminum trihydroxide/Fe-montmorillonite composites. Polym Eng Sci. 2012;52(2):414–9.

    Article  CAS  Google Scholar 

  35. Chen XL, Hu Y, Jiao CM, Song L. Preparation and thermal properties of a novel flame-retardant coating. Polym Degrad Stab. 2007;92(6):1141–50.

    Article  CAS  Google Scholar 

  36. Wang Y, Zhang J. Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions. J Hazard Mater. 2013;246–247:103–9.

    Google Scholar 

  37. Raquel V, Fabienne B, Miguel A, Jose A, Miguel A, Miguel A. Carbon nanotubes provide self-extinguishing grade to silicone-based foams. J Mater Chem. 2008;18(33):3933–9.

    Article  Google Scholar 

  38. Jellinek H, Takada K. Toxic gas evolution from polymers: evolution of hydrogen cyanide from polyurethanes. J Polym Sci Polym Chem. 1977;15(9):2269–88.

    Article  CAS  Google Scholar 

  39. Tao L, Zhao G, Qian J, Qin Y. TG-FTIR characterization of pyrolysis of waste mixtures of paint and tar slag. J Hazard Mater. 2010;175(1–3):754–61.

    Article  CAS  Google Scholar 

  40. Xie Q, Zhang H, Tong L. Experimental study on the fire protection properties of PVC sheath for old and new cables. J Hazard Mater. 2010;179:373–81.

    Article  CAS  Google Scholar 

  41. McNeill I, Leiper H. Degradation studies of some polyesters and polycarbonates-2. Polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab. 1985;11:309–26.

    Article  CAS  Google Scholar 

  42. Zou H, Yi C, Wang L, Liu H, Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim. 2009;97:929–35.

    Article  CAS  Google Scholar 

  43. Chen XL, Huo LL, Jiao CM, Li S. TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrolysis. 2013;100:186–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51106078; 51206084) and the Out-standing Young Scientist Research Award Fund from Shandong Province (BS2011CL018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmei Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Song, W., Liu, J. et al. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites. J Therm Anal Calorim 120, 1819–1826 (2015). https://doi.org/10.1007/s10973-015-4428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4428-0

Keywords

Navigation