Skip to main content
Log in

Radiopaque nanocomposites based on biocompatible iodinated N-phenyl amide-modified methyl methacrylate/acrylic acid copolymer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New radiopaque nanocomposites were prepared using iodinated copolymers and cloisite 20A, as reinforcement agent. Iodinated copolymers were prepared through copolymerization of Methyl methacrylate and acrylic acid and subsequently modification of the P(MMA-co-AA) via 4-iodophenyl isocynate and 3,4,5-triiophenyl isocyanate for synthesis of 1I-P(MMA-co-AA) and 3I-P(MMA-co-AA) respectively. Preparation of the nanocomposites was carried out by the solution method using various amounts of organoclay. In order to investigate the effect of iodinated substituents on the morphology and thermal characteristics of the composite samples, the P(MMA-co-AA) was modified via phenyl isocyanate (PIC-P(MMA-co-AA)) and then the nanocomposites were prepared using cloisite 20A. All the nanocomposite samples were characterized by X-ray diffraction (XRD), scanning electron microscopoy (SEM), and thermogravimetric analysis (TGA). The X-ray visibility of the radiopaque nanocomposites was also explored using X-radiography. The results obtained indicated that the iodinated nanocomposites had an excellent radiopacity, and due to their biocompatibility, they could be used for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kiran S, Joseph R (2015) Synthesis and characterization of X-ray opaque polycarbonate urethane: effect of a dihalogenated chain extender on radiopacity and hemocompatibility. J Biomed Mater Res A 103(7):2214–2224

    Article  CAS  Google Scholar 

  2. Sang L, Wei Z, Liu K, Wang X, Song K, Wang H, Qi M (2014) Biodegradable radiopaque iodinated poly (ester urethane) s containing poly (ε-caprolactone) blocks: synthesis, characterization, and biocompatibility. J Biomed Mater Res A 102(4):1121–1130

    Article  Google Scholar 

  3. Basheer RA, Workman DB (2010) Radiopaque polymers for circuit board assembly. U.S. Patent 7, 790, 814

  4. Mottu F, Rüfenacht DA, Laurent A, Doelker E (2002) Iodine-containing cellulose mixed esters as radiopaque polymers for direct embolization of cerebral aneurysms and arteriovenous malformations. Biomaterials 23(1):121–131

    Article  CAS  Google Scholar 

  5. Mawad D, Mouaziz H, Penciu A, Méhier H, Fenet B, Fessi H, Chevalier Y (2009) Elaboration of radiopaque iodinated nanoparticles for in situ control of local drug delivery. Biomaterials 30(29):5667–5674

    Article  CAS  Google Scholar 

  6. Kiran S, James NR, Jayakrishnan A, Joseph R (2012) Polyurethane thermoplastic elastomers with inherent radiopacity for biomedical applications. J Biomed Mater Res A 100(12):3472–3479

    Article  CAS  Google Scholar 

  7. Agusti G, Jordan O, Andersen G, Doelker É, Chevalier Y (2015) Radiopaque iodinated ethers of poly (vinyl iodobenzyl ether) s: synthesis and evaluation for endovascular embolization. J Appl Polym Sci 132(14):41791–41803

    Article  Google Scholar 

  8. James NR, Jayakrishnan A (2007) On imparting radiopacity to a poly (urethane urea). Biomaterials 28(21):3182–3187

    Article  CAS  Google Scholar 

  9. Dawlee S, Jayakrishnan A, Jayabalan M (2009) Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications. J Mater Sci Mater Med 20(1):243–250

    Article  Google Scholar 

  10. Rawls HR, Granier RJ, Smid J, Cabasso I (1996) Thermomechanical investigation of poly (methylmethacrylate) containing an organobismuth radiopacifying additive. J Biomed Mater Res 31(3):339–343

    Article  CAS  Google Scholar 

  11. Pariente J, Bordenave L, Bareille R, Ohayon-Courtes C, Baquey C, Le Guillou M (1999) In vitro cytocompatibility of radio-opacifiers used in ureteral endoprosthesis. Biomaterials 20(6):523–527

    Article  CAS  Google Scholar 

  12. Ginebra M, Albuixech L, Fernandez-Barragan E, Aparicio C, Gil F, San Roman J, Vazquez B, Planell J (2002) Mechanical performance of acrylic bone cements containing different radiopacifying agents. Biomaterials 23(8):1873–1882

    Article  CAS  Google Scholar 

  13. Deb S, Abdulghani S, Behiri J (2002) Radiopacity in bone cements using an organo-bismuth compound. Biomaterials 23(16):3387–3393

    Article  CAS  Google Scholar 

  14. Cabasso I, Smid J, Sahni SK (1989) Radiopaque miscible systems composed of poly (methyl methacrylate) and transition and nontransition metal salts: spectroscopic, thermal, and radiographic characterization. J Appl Polym Sci 38(9):1653–1666

    Article  CAS  Google Scholar 

  15. Lakshmi S, James NR, Nisha V, Jayakrishnan A (2003) Synthesis and polymerization of a new iodine-containing monomer. J Appl Polym Sci 88(11):2580–2584

    Article  CAS  Google Scholar 

  16. Okamura M, Yamanobe T, Arai T, Uehara H, Komoto T, Hosoi S, Kumazaki T (2002) Synthesis and properties of radiopaque polymer hydrogels II: copolymers of 2, 4, 6-triiodophenyl-or N-(3-carboxy-2, 4, 6-triiodophenyl)-acrylamide and p-styrene sulfonate. J Mol Struct 602:17–28

    Article  Google Scholar 

  17. James NR, Philip J, Jayakrishnan A (2006) Polyurethanes with radiopaque properties. Biomaterials 27(2):160–166

    Article  CAS  Google Scholar 

  18. Jayakrishnan A, Thanoo BC, Rathinam K, Mohanty M (1990) Preparation and evaluation of radiopaque hydrogel microspheres based on PHEMA/iothalamic acid and PHEMA/iopanoic acid as particulate emboli. J Biomed Mater Res 24(8):993–1004

    Article  CAS  Google Scholar 

  19. Horak D, Metalova M, Švec F, Drobnik J, Kalal J, Borovička M, Adamyan A, Voronkova O, Gumargalieva K (1987) Hydrogels in endovascular embolization. III. Radiopaque spherical particles, their preparation and properties. Biomaterials 8(2):142–145

    Article  CAS  Google Scholar 

  20. Gomoll AH, Bellare A, Fitz W, Thornhill TS, Scott RD, Jemian PR, Long GG (1999) A nano-composite poly (methyl-methacrylate) bone cement. Mater Res Soc Symp Proc 581:399–404

    Article  Google Scholar 

  21. Romero-Ibarra I, Bonilla-Blancas E, Sanchez-Solis A, Manero O (2012) Influence of the morphology of barium sulfate nanofibers and nanospheres on the physical properties of polyurethane nanocomposites. Eur Polym J 48(4):670–676

    Article  CAS  Google Scholar 

  22. Ely TO, Sharma M, Lesniak W, Klippenstein DL, Foster BA, Balogh LP (2008) Dendrimer nanocomposites as multifunctional X-ray contrast agents. Mater Res Soc Symp Proc 1064:6–18

    Google Scholar 

  23. Chan D, Titus H, Chung K-H, Dixon H, Wellinghoff S, Rawls H (1999) Radiopacity of tantalum oxide nanoparticle filled resins. Dent Mater 15(3):219–222

    Article  CAS  Google Scholar 

  24. Shiekh RA, Ab Rahman I, Luddin N (2014) Modification of glass ionomer cement by incorporating hydroxyapatite-silica nano-powder composite: sol–gel synthesis and characterization. Ceram Int 40(2):3165–3170

    Article  Google Scholar 

  25. Nicholson J, Hawkins S, Smith J (1993) The incorporation of hydroxyapatite into glass-polyalkenoate (“glass-ionomer”) cements: a preliminary study. J Mater Sci Mater Med 4(4):418–421

    Article  CAS  Google Scholar 

  26. Yeum JH, Sun Q, Deng Y (2005) Poly (vinyl acetate)/silver nanocomposite microspheres prepared by suspension polymerization at low temperature. Macromol Mater Eng 290(1):78–84

    Article  CAS  Google Scholar 

  27. Cha JW, Lyoo WS, TH O, Han SS, Lee HG (2014) Preparation of syndiotactic poly (vinyl alcohol) embolic particles with radiopacity. Fiber Polym 15(3):472–479

    Article  CAS  Google Scholar 

  28. Schulz H, Pratsinis SE, Rüegger H, Zimmermann J, Klapdohr S, Salz U (2008) Surface functionalization of radiopaque ta 2 O 5/SiO 2. Colloids Surf A Physicochem Eng Asp ects 315(1):79–88

    Article  CAS  Google Scholar 

  29. Schulz H, Mädler L, Pratsinis SE, Burtscher P, Moszner N (2005) Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix. Adv Funct Mater 15(5):830–837

    Article  CAS  Google Scholar 

  30. Mädler L, Krumeich F, Burtscher P, Moszner N (2006) Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers. J Nanopart Res 8(3–4):323–333

    Article  Google Scholar 

  31. Khaled S, Charpentier PA, Rizkalla AS (2010) Synthesis and characterization of poly (methyl methacrylate)-based experimental bone cements reinforced with TiO 2–SrO nanotubes. Acta Biomater 6(8):3178–3186

    Article  CAS  Google Scholar 

  32. Hasan SM, Harmon G, Zhou F, Raymond JE, Gustafson TP, Wilson TS, Maitland DJ (2016) Tungsten-loaded SMP foam nanocomposites with inherent radiopacity and tunable thermo-mechanical properties. Polym Adv Technol 27(2):195–203

    Article  CAS  Google Scholar 

  33. Salahuddin N, Abo-El-Enein S, Selim A, El-Dien OS (2010) Synthesis and characterization of polyurethane/organo-montmorillonite nanocomposites. Appl Clay Sci 47(3):242–248

    Article  CAS  Google Scholar 

  34. Mansoori Y, Roojaei K, Zamanloo MR, Imanzadeh G (2012) Polymer–clay nanocomposites via chemical grafting of polyacrylonitrile onto cloisite 20A. Bull Mater Sci 35(7):1063–1070

    Article  CAS  Google Scholar 

  35. Donescu D, Ianchis R, Petcu C, Purcar V, Nistor C, Radovici C, Somoghi R, Pop S, Perichaud A (2013) Study of the solvent influence on the layered silicates-cation polymer hybrids properties. Dig J Nanomat Biostruc 8:1751–1759

    Google Scholar 

  36. Costache MC, Heidecker M, Manias E, Wilkie CA (2006) Preparation and characterization of poly (ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants. Polym Adv Technol 17(9–10):764–771

    Article  CAS  Google Scholar 

  37. Lee S, Yoo J, Lee JW (2015) Water-assisted extrusion of polypropylene/clay nanocomposites in high shear condition. J Ind Eng Chem 31:317–322

    Article  CAS  Google Scholar 

  38. Romanzini D, Piroli V, Frache A, Zattera AJ, Amico SC (2015) Sodium montmorillonite modified with methacryloxy and vinylsilanes: influence of silylation on the morphology of clay/unsaturated polyester nanocomposites. Appl Clay Sci 114:550–557

    Article  CAS  Google Scholar 

  39. Bekri-Abbes I, Srasra E (2015) Green synthesis of polyaniline/clay/iron ternary nanocomposite by the one step solid state intercalation method. Mater Sci Semicond Process 40:543–549

    Article  CAS  Google Scholar 

  40. Sahoo SK, Mohanty S, Nayak SK (2015) A study on effect of organo modified clay on curing behavior and thermo-physical properties of epoxy methyl ester based epoxy nanocomposite. Thermochim Acta 614:163–170

    Article  CAS  Google Scholar 

  41. Ramadan AR, Esawi AM, Gawad AA (2010) Effect of ball milling on the structure of Na+−montmorillonite and organo-montmorillonite (Cloisite 30B). Appl Clay Sci 47(3):196–202

    Article  CAS  Google Scholar 

  42. Wang J, Iroh JO, Hall S (2014) Effect of polyaniline-modified clay on the processing and properties of clay polyimide nanocomposites. Appl Clay Sci 99:215–219

    Article  CAS  Google Scholar 

  43. Emre FB, Kesik M, Kanik FE, Akpinar HZ, Aslan-Gurel E, Rossi RM, Toppare L (2015) A benzimidazole-based conducting polymer and a PMMA–clay nanocomposite containing biosensor platform for glucose sensing. Synth Met 207:102–109

    Article  CAS  Google Scholar 

  44. Rehab A, Akelah A, Agag T, Shalaby N (2007) Preparation and characterization of polyurethane–organoclay nanocomposites. Polym Composite 28(1):108–115

    Article  CAS  Google Scholar 

  45. Sedláková Z, Pleštil J, Baldrian J, Šlouf M, Holub P (2009) Polymer-clay nanocomposites prepared via in situ emulsion polymerization. Polym Bull 63(3):365–384

    Article  Google Scholar 

  46. Kaur M, Datta MD (2013) Synthesis and characterization of biodegradable clay-polymer nanocomposites for oral sustained release of anti inflammatory drug. Eur Chem Bull 2(9):670–678

    CAS  Google Scholar 

  47. Datta M (2013) In vitro sustained delivery of atenolol, an antihypertensive drug using naturally occurring clay mineral montmorillonite as a carrier. Eur Chem Bull 2(11):942–951

    Google Scholar 

  48. Seema S, Datta M (2014) Organoclay Pluronic F68–montmorillonite, as a sustained release drug delivery vehicle for propranolol hydrochloride. Eur Chem Bull 3(6):593–604

    CAS  Google Scholar 

  49. Shiralizadeh S, Nasr-isfahani H, Keivanloo A, Bakherad M (2016) Mono-and triiodophenyl isocyanate as radiopacifying agents for methacrylate-based copolymers; biocompatibility and non-toxicity. RSC Adv 6:110400–110408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Shahrood University of Technology is gratefully acknowledged. We are also grateful to Dr. Salman Gharagozloo for his help in measuring the radiopacity of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nasr-Isfahani.

Electronic supplementary material

ESM 1

(TIFF 4.78 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiralizadeh, S., Nasr-Isfahani, H., Keivanloo, A. et al. Radiopaque nanocomposites based on biocompatible iodinated N-phenyl amide-modified methyl methacrylate/acrylic acid copolymer. J Polym Res 24, 186 (2017). https://doi.org/10.1007/s10965-017-1349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1349-6

Keywords

Navigation