Skip to main content

Advertisement

Log in

Recent advances in CNTs-based sensors for detecting the quality and safety of food and agro-product

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The quality and safety of food and agro-product is closely aligned with the development of human society. In the process of production, transportation and storage, the detection of indexes is indispensable to ensure the quality and safety of food and agro-product. The conventional detection methods such as using chromatography instruments and bacterial colony are expensive and complex. Hence, in recent years, CNTs-based sensors for food and agro-product detection are of growing interest. Compared to the conventional detection methods, CNT-based sensors display remarkable stability, superior mechanical, excellent thermal conductivity, optical and electronic performance, high antibacterial properties and chemical stability which enable the quality detection to be faster, cheaper and more accurate. Here, we comprehensively review the recent advances in those sensors for food quality detection, including the detection of fruit ripeness, ingredients, pesticides, noxious substances and allergens. We hold the view that the applications of CNTs in detection can be divided into two categories. One is to use CNTs and their composite materials as adsorption fillers in different sample pretreatment technologies. The other is to use them to modify electrodes and fix biological recognition elements. Furthermore, the current challenges and prospects in this field are included here to provide an overview of future research directions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.C. McCarthy, E.H. Belarmino, F. Bertmann, M.T. Niles, Food Security impacts of the COVID-19 pandemic: longitudinal evidence from a cohort of adults in Vermont during the First Year. Nutrients 14 (7) (2022)

  2. Food and Agriculture Organization of the United Nations. The state of food security and nutrition in the world 2022. (2022)

  3. O. Calicioglu, A. Flammini, S. Bracco, L. Bellù, R. Sims, The Future Challenges of Food and Agriculture: an Integrated Analysis of Trends and Solutions. Sustainability 11 (1) (2019)

  4. M.Z. Tsimidou, S.A. Ordoudi, F.T. Mantzouridou, N. Nenadis, T. Stelzl, M. Rychlik, N. Belc, C. Zoani, Strategic Priorities of the scientific plan of the European Research infrastructure METROFOOD-RI for promoting Metrology in Food and Nutrition. Foods, 11 (4) (2022)

  5. J. Fanzo, C. Rudie, I. Sigman, S. Grinspoon, T.G. Benton, M.E. Brown, N. Covic, K. Fitch, C.D. Golden, D. Grace, M.F. Hivert, P. Huybers, L.M. Jaacks, W.A. Masters, N. Nisbett, R.A. Richardson, C.R. Singleton, P. Webb, W.C. Willett Sustainable food systems and nutrition in the 21st century: a report from the 22nd annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr, 115 (1): 18–33 (2022)

  6. L.D. Zanetta, R.M.D. Mucinhato, M.P. Hakim, E. Stedefeldt, D.T. da Cunha, What motivates consumer food safety perceptions and beliefs? A scoping review in BRICS Countries. Foods 11 (3) (2022)

  7. S. Hoffmann, H. W. Food safety and risk governance in globalized markets. Health Matrix Clevel. 20(1), 5–54 (2010)

    PubMed  Google Scholar 

  8. Y. Wu, P. Liu, J. Chen-s. Food safety risk assessment in China: Past, present and future. Food Control90: 212–221 (2018)

  9. M.A.A. Mariah, J.M. Vonnie, K.H. Erna, N.M. Nur’Aqilah, N. Huda, A. Wahab, R., and K. Rovina, The emergence and impact of Ethylene Scavengers Techniques in delaying the ripening of fruits and vegetables. Membranes (Basel) 12 (2) (2022)

  10. B.J. Blaauboer, A.R. Boobis, B. Bradford, A. Cockburn, A. Constable, M. Daneshian, G. Edwards, J.A. Garthoff, B. Jeffery, C. Krul, J. Schuermans, Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food Chem. Toxicol. 91, 19–35 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. K.M. Lee, M. Son, J.H. Kang, D. Kim, S. Hong, T.H. Park, H.S. Chun, S.S. Choi, A triangle study of human, instrument and bioelectronic nose for non-destructive sensing of seafood freshness. Sci. Rep. 8(1), 547 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  12. B.J. Panel, A. Assa’ad, A.W. Burks, S.M. Jones, H.A. Sampson, R.A. Wood, M. Plaut, S.F. Cooper, M.J. Fenton, S.H. Arshad, S.L. Bahna, L.A. Beck, C. Byrd-Bredbenner, C.A. Camargo Jr., L. Eichenfield, G.T. Furuta, J.M. Hanifin, C. Jones, M. Kraft, B.D. Levy, P. Lieberman, S. Luccioli, K.M. McCall, L.C. Schneider, R.A. Simon, F.E. Simons, S.J. Teach, B.P. Yawn, J.M. Schwaninger, Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 126, S1–S58 (2010)

    Article  Google Scholar 

  13. O. Kanoun, T. Lazarevic-Pasti, I. Pasti, S. Nasraoui, M. Talbi, A. Brahem, A. Adiraju, E. Sheremet, R.D. Rodriguez, B. Ali, M., and A. Al-Hamry, A review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors (Basel) 21 (12) (2021)

  14. Z. Guo, D.D. Li, X.K. Luo, Y.H. Li, Q.N. Zhao, M.M. Li, Y.T. Zhao, T.S. Sun, C. Ma, Simultaneous determination of trace cd(II), pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode. J. Colloid Interface Sci. 490, 11–22 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. R. Kumar, J.S. Duhan, A. Manuja, P. Kaur, B. Kumar, P.K. Sadh, Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan-Gum Acacia Nanocomposites. J. Xenobiot 12(2), 74–90 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Coenye, D. Tianfei, H. Huang Analysis on Key Ideas of Research Progress in Biotechnology Crop Food Detection Technology. E3S Web of Conferences145 (2020)

  17. J. Ashley, M.A. Shahbazi, K. Kant, V.A. Chidambara, A. Wolff, D.D. Bang, Y. Sun, Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens. Bioelectron. 91, 606–615 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Carbon Nanotube Chemical Sensors. Chem. Rev. 119(1), 599–663 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. V.D. Rajput, A. Singh, T. Minkina et al., Nano-Enabled Products: Challenges and Opportunities for sustainable agriculture. Plants (Basel) 10(12), 2727 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. G. Drera, S. Freddi, A.V. Emelianov, I.I. Bobrinetskiy, M. Chiesa, M. Zanotti, S. Pagliara, F.S. Fedorov, A.G. Nasibulin, P. Montuschi, L. Sangaletti, Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease. RSC Adv. 11(48), 30270–30282 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Noh, S. An, C. Lee, J. Chang, S. Lee, M. Lee, D. Seo, Investigation on the printed CNT-Film-Based Electrochemical Sensor for detection of Liquid Chemicals. Sensors (Basel) 21 (15) (2021)

  22. M. Rdest, D. Janas, Carbon Nanotube Wearable Sensors for Health Diagnostics. Sensors (Basel) 21 (17) (2021)

  23. R. Maheswaran, B.P. Shanmugavel, A critical review of the role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications. J. Electron. Mater. 51(6), 2786–2800 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Hermann, S. Schulze, R. Ecke, A. Liebig, P. Schaefer, D.R.T. Zahn, M. Albrecht, M. Hietschold, S.E. Schulz, T. Gessner, Growth of carbon nanotube forests between a bi-metallic catalyst layer and a SiO2 substrate to form a self-assembled carbon–metal heterostructure. Carbon 50(13), 4765–4772 (2012)

    Article  CAS  Google Scholar 

  25. G. Cho, S. Azzouzi, G. Zucchi, B. Lebental, Electrical and Electrochemical Sensors based on Carbon Nanotubes for the monitoring of Chemicals in Water-A Review. Sensors (Basel) 22 (1) (2021)

  26. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. M. Iranifam, Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TRAC Trends Anal. Chem 80, 387–415 (2016)

    Article  CAS  Google Scholar 

  28. X. Liang, S. Liu, S. Wang, Y. Guo, S. Jiang, Carbon-based sorbents: carbon nanotubes. J. Chromatogr. A 1357, 53–67 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. G. Stando, D. Łukawski, F. Lisiecki, D. Janas, Intrinsic hydrophilic character of carbon nanotube networks. Appl. Surf. Sci 463, 227–233 (2019)

    Article  CAS  Google Scholar 

  30. N.T. Karousis, N. and D. Tasis, Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110(9), 5366–5397 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. D. Jang, J.E. Park, Y.K. Kim, Evaluation of (CNT@CIP)-Embedded Magneto-Resistive Sensor based on Carbon Nanotube and Carbonyl Iron Powder Polymer Composites. Polymers (Basel) 14 (3) (2022)

  32. H. Pham-Tuan, J. Vercammen, C. Devos, P. Sandra, Automated capillary gas chromatographic system to monitor ethylene emitted from biological materials. J. Chromatogr. A 868, 249–259 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. J.A. De Gouw, tL.H.S. Mellqvist, J, et al. Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy. Environ. Sci. Technol. 43, 2437–2442 (2009)

    Article  PubMed  Google Scholar 

  34. D. Fong, S.X. Luo, R.S. Andre, T.M. Swager, Trace Ethylene sensing via Wacker Oxidation. ACS Cent. Sci. 6(4), 507–512 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. W.Y. Chen, A. Yermembetova, B.M. Washer, X. Jiang, S.N. Shuvo, D. Peroulis, A. Wei, L.A. Stanciu, Selective detection of Ethylene by MoS2-Carbon Nanotube Networks coated with Cu(I)-Pincer Complexes. ACS Sens. 5(6), 1699–1706 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Q. Wang, Y. Wu, X. Deng, L. Xiang, K. Xu, Y. Li, Y. Xie, Preparation and bolometric responses of MoS2 Nanoflowers and Multi-Walled Carbon Nanotube Composite Network. Nanomaterials (Basel) 12 (3) (2022)

  37. S. Ishihara, A. Bahuguna, S. Kumar, V. Krishnan, J. Labuta, T. Nakanishi, T. Tanaka, H. Kataura, Y. Kon, D. Hong, Cascade reaction-based chemiresistive array for Ethylene Sensing. ACS Sens. 5(5), 1405–1410 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. G. Speranza, Carbon Nanomaterials: synthesis, functionalization and sensing applications. Nanomaterials (Basel), 11 (4) (2021)

  39. H.X. Guo, Y.Q. Li, L.F. Fan, X.Q. Wu, M. Guo, D. Voltammetric behavior study of folic acid at phosphomolybdic-polypyrrole film modified electrode. Electrochim. Acta 51(28), 6230–6237 (2006)

    Article  CAS  Google Scholar 

  40. F. Wang, M. Cao, N. Wang, N. Muhammad, S. Wu, Y. Zhu, Simple coupled ultrahigh performance liquid chromatography and ion chromatography technique for simultaneous determination of folic acid and inorganic anions in folic acid tablets. Food Chem. 239, 62–67 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. F. Grande, E.B. Giuntini, K.S. Coelho, E.W. Menezes, Elaboration of a standardized dataset for foods fortified with iron and folic acid in Brazil. Journal of Food Composition and Analysis 83 (2019)

  42. J. Lin, C. Wang, S. Li, J. Zhang, L. Jin, M. Tong, W. Meng, A. Ren, L. Chen, L. Jin, Periconceptional Folic Acid Supplementation and Newborn Birth weights. Front. Pediatr. 10, 844404 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  43. J.P. Winiarski, R. Rampanelli, J.C. Bassani, D.Z. Mezalira, C.L. Jost, Multi-walled carbon nanotubes/nickel hydroxide composite applied as electrochemical sensor for folic acid (vitamin B9) in food samples. Journal of Food Composition and Analysis 92 (2020)

  44. L.M. Montano, B. Sommer, J.C. Gomez-Verjan, G.S. Morales-Paoli, G.L. Ramirez-Salinas, H. Solis-Chagoyan, Z.A. Sanchez-Florentino, E. Calixto, G.E. Perez-Figueroa, R. Carter, R. Jaimez-Melgoza, B.S. Romero-Martinez, E. Flores-Soto, Theophylline, Old Drug in a New Light, Application in COVID-19 through computational studies. Int J Mol Sci 23 (8) (2022)

  45. R.A. Al-Haidari, N.A. Abdallah, M.M. Al-Oqail, E.S. Al-Sheddi, S.M. Al-Massarani, Farshori, N. N. Nanoparticles based solid contact potentiometric sensor for the determination of theophylline in different types of tea extract. Inorganic Chemistry Communications 119 (2020)

  46. H. Qi, L. Yu, Y. Li, M. Cai, J. He, J. Liu, L. Hao, H. Xu, M. Qiao, Developing Multi-Copy chromosomal integration strategies for Heterologous Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae. Front. Microbiol. 13, 851706 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  47. A.V. Bounegru, C. Apetrei, Voltamperometric sensors and biosensors based on Carbon Nanomaterials used for detecting Caffeic Acid-A Review. Int J Mol Sci 21 (23) (2020)

  48. V. Erady, R.J. Mascarenhas, A.K. Satpati, A.K. Bhakta, Z. Mekhalif, J. Delhalle, and A, D. Carbon paste modified with Bi decorated multi-walled carbon nanotubes and CTAB as a sensitive voltammetric sensor for the detection of caffeic acid. Microchem. J 146, 73–82 (2019)

    Article  CAS  Google Scholar 

  49. P.J. Rogers, P.S. Hogenkamp, C. de Graaf, S. Higgs, A. Lluch, A.R. Ness, C. Penfold, R. Perry, P. Putz, M.R. Yeomans, D.J. Mela, Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int. J. Obes. (Lond) 40(3), 381–394 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. J.J. Castillo, G. Couture, N.P. Bacalzo Jr., Y. Chen, E.L. Chin, S.E. Blecksmith, Y.Y. Bouzid, Y. Vainberg, C. Masarweh, Q. Zhou, J.T. Smilowitz, J.B. German, D.A. Mills, D.G. Lemay, C.B. Lebrilla, The development of the Davis Food Glycopedia-A Glycan Encyclopedia of Food. Nutrients 14 (8) (2022)

  51. D.R. Bagal-Kestwal, B.-H. Chiang, Platinum nanoparticle-carbon nanotubes dispersed in gum arabic-corn flour composite-enzymes for an electrochemical sucrose sensing in commercial juice. Ionics 25(11), 5551–5564 (2019)

    Article  CAS  Google Scholar 

  52. M. Lee, D. Kim, Exotic carbon nanotube based field effect transistor for the selective detection of sucrose. Materials Letters 268 (2020)

  53. G. Jayanthi Kalaivani, S.K. Suja, Nanomolar level sensing of glucose in food samples using glucose oxidase confined MWCNT-Inulin-TiO2 bio-nanocomposite. Food Chem. 298, 124981 (2019)

    Article  CAS  PubMed  Google Scholar 

  54. A. Ghanam, N. Haddour, H. Mohammadi, A. Amine, A. Sabac, F. Buret, Nanoporous cauliflower-like Pd-Loaded Functionalized Carbon Nanotubes as an enzyme-free Electrocatalyst for glucose sensing at Neutral pH: mechanism study. Sensors (Basel) 22 (7) (2022)

  55. E. Vargas, F. Conzuelo, M. Ruiz, S. Campuzano, V. Ruiz-Valdepeñas Montiel, González de Rivera, G., F. López-Colino, Á Reviejo, J. Pingarrón, Automated Bioanalyzer based on amperometric enzymatic biosensors for the determination of ethanol in Low-Alcohol Beers. Beverages 3 (4) (2017)

  56. Z. Miao, C. Nian, X. Shao, Q. Chen, Alcohol biosensor based on multi-walled carbon nanotubes/platinum nanoparticles nanocomposite. Chin. J. Sens. Actuators 30, 16–19 (2017)

    Google Scholar 

  57. M. Bilgi, E. Ayranci, Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. J. Electroanal. Chem 823, 588–592 (2018)

    Article  CAS  Google Scholar 

  58. S.A. Bekmezci, S. Soylemez, G. Yilmaz, Y.A. Udum, Y. Yagci, L. Toppare, A new ethanol biosensor based on polyfluorene-g-poly(ethylene glycol) and multiwalled carbon nanotubes. European Polymer Journal 122 (2020)

  59. S. Datta, B. Kanjilal, P. Sarkar, Electrochemical Sensor for detection of polyphenols in tea and wine with Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy utilizing tyrosinase and gold nanoparticles decorated Biomembrane. J. Electrochem. Soc 164(4), B118–B126 (2017)

    Article  CAS  Google Scholar 

  60. F. Back, E. Mathieu, C. Betscha, S. El Yakhlifi, Y. Arntz, V. Ball, Optimization of the elasticity and adhesion of Catechol- or dopamine-loaded gelatin gels under oxidative conditions. Gels 8 (4) (2022)

  61. C. Salvo-Comino, I. Rassas, S. Minot, F. Bessueille, M. Arab, V. Chevallier, M.L. Rodriguez-Mendez, A. Errachid, N. Jaffrezic-Renault, Voltammetric Sensor based on Molecularly Imprinted Chitosan-Carbon Nanotubes decorated with gold nanoparticles nanocomposite deposited on Boron-Doped Diamond Electrodes for Catechol Detection. Materials (Basel) 13 (3) (2020)

  62. K. Otulak-Koziel, E. Koziel, W. Przewodowski, K. Ciacka, A. Przewodowska, Glutathione modulation in PVY(NTN) susceptible and resistant potato plant interactions. Int J Mol Sci 23 (7) (2022)

  63. F. Bottino, M. Lucignani, A. Napolitano, F. Dellepiane, E. Visconti, M.C. Rossi Espagnet, L. Pasquini In Vivo brain GSH: MRS Methods and clinical applications. Antioxidants (Basel) 10 (9) (2021)

  64. M. Nejadmansouri, M. Majdinasab, G.S. Nunes, J.L. Marty, An overview of Optical and Electrochemical Sensors and Biosensors for analysis of Antioxidants in Food during the last 5 years. Sensors (Basel) 21 (4) (2021)

  65. Y. Xu, X. Niu, H. Zhang, L. Xu, S. Zhao, H. Chen, X. Chen, Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg(2)(+) chemosensor. J. Agric. Food Chem. 63(6), 1747–1755 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. E.M. Silva, R.M. Takeuchi, A.L. Santos, Carbon nanotubes for voltammetric determination of sulphite in some beverages. Food Chem. 173, 763–769 (2015)

    Article  CAS  PubMed  Google Scholar 

  67. S.V. Irwin, L.M. Deardorff, Y. Deng, P. Fisher, M. Gould, J. June, R.S. Kent, Y. Qin, F. Yadao, Sulfite preservatives effects on the mouth microbiome: changes in viability, diversity and composition of microbiota. PLoS One 17(4), e0265249 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. P. Manusha, S. Senthilkumar, Design and synthesis of phenothiazine based imidazolium ionic liquid for electrochemical nonenzymatic detection of sulfite in food samples. Journal of Molecular Liquids 301 (2020)

  69. S. Kadach, B. Piknova, M.I. Black, J.W. Park, L.J. Wylie, Z. Stoyanov, S.M. Thomas, N.F. McMahon, A. Vanhatalo, A.N. Schechter, A.M. Jones, Time course of human skeletal muscle nitrate and nitrite concentration changes following dietary nitrate ingestion. Nitric Oxide 121, 1–10 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Z. Wu, T. Tian, W. Ma, W. Gao, N. Song, Higher urinary nitrate was associated with lower prevalence of congestive heart failure: results from NHANES. BMC Cardiovasc. Disord 20(1), 498 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. C. Jiang, Y. He, Y. Liu, Recent advances in sensors for electrochemical analysis of nitrate in food and environmental matrices. Analyst 145(16), 5400–5413 (2020)

    Article  CAS  PubMed  Google Scholar 

  72. S. Nasraoui, A. Al-Hamry, P.R. Teixeira, S. Ameur, L.G. Paterno, B. Ali, M., and O. Kanoun, Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by au nanoparticles. Journal of Electroanalytical Chemistry 880 (2021)

  73. M. Lv, Y. Liu, J. Geng, X. Kou, Z. Xin, D. Yang, Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 106, 122–128 (2018)

    Article  CAS  PubMed  Google Scholar 

  74. J.-M. Liu, Y. Hu, Y.-K. Yang, H. Liu, G.-Z. Fang, X. Lu, S. Wang, Emerging functional nanomaterials for the detection of food contaminants. Trends in Food Science and Technology 71, 94–106 (2018)

    Article  CAS  Google Scholar 

  75. M. Pan, Z. Yin, K. Liu, X. Du, H. Liu, S. Wang, Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials (Basel) 9 (9) (2019)

  76. Q.L. Zhou, X. Wang, X. Shi, D. Zhang, S. Yin, Y. Zhang, H. Liu, B. Song, N. Zhang, Y. Vanillic Acid as a Promising Xanthine oxidase inhibitor: extraction from Amomum villosum Lour and Biocompatibility Improvement via Extract Nanoemulsion. Foods 11 (7) (2022)

  77. S. Yazdanparast, A. Benvidi, S. Abbasi, M. Rezaeinasab, Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: a meat freshness marker. Microchemical Journal 149 (2019)

  78. S. Duvigneau, A. Kettner, L. Carius, C. Griehl, R. Findeisen, A. Kienle, Fast, Inexpensive, and reliable HPLC method to determine monomer fractions in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Appl. Microbiol. Biotechnol. 105(11), 4743–4749 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. C.A. Valdez, R.N. Leif, Analysis of Organophosphorus-Based nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): current derivatization reactions in the Analytical Chemist’s Toolbox. Molecules 26 (15) (2021)

  80. T. Kalinina, V. Kononchuk, L. Klyushova, L. Gulyaeva, Effects of Endocrine Disruptors o,p’-Dichlorodiphenyltrichloroethane, p,p’-Dichlorodiphenyltrichloroethane, and Endosulfan on the expression of Estradiol-, Progesterone-, and testosterone-responsive MicroRNAs and their target genes in MCF-7 cells. Toxics 10 (1) (2022)

  81. C. Song, A. Charli, J. Luo, Z. Riaz, H. Jin, V. Anantharam, A. Kanthasamy, A.G. Kanthasamy, Mechanistic interplay between autophagy and apoptotic signaling in Endosulfan-Induced Dopaminergic Neurotoxicity: relevance to the adverse outcome pathway in Pesticide neurotoxicity. Toxicol. Sci. 169(2), 333–352 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. C. Liao, K. Kannan, Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ. Sci. Technol. 45(21), 9372–9379 (2011)

    Article  CAS  PubMed  Google Scholar 

  83. C. Karrer, W. de Boer, C. Delmaar, Y. Cai, A. Crepet, K. Hungerbuhler, N. von Goetz, Linking Probabilistic exposure and pharmacokinetic modeling to assess the cumulative risk from the Bisphenols BPA, BPS, BPF, and BPAF for Europeans. Environ. Sci. Technol. 53(15), 9181–9191 (2019)

    Article  CAS  PubMed  Google Scholar 

  84. M.M. El Tabaa, S.S. Sokkar, E.S. Ramdan, E. Salam, I. Z. A., and A. Anis, Does (-)-epigallocatechin-3-gallate protect the neurotoxicity induced by bisphenol A in vivo? Environ. Sci. Pollut Res. Int. 29(21), 32190–32203 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. H. Ezoji, M. Rahimnejad, G. Najafpour-Darzi, Advanced sensing platform for electrochemical monitoring of the environmental toxin; bisphenol A. Ecotoxicol. Environ. Saf. 190, 110088 (2020)

    Article  CAS  PubMed  Google Scholar 

  86. A.U. Alam, M.J. Deen, Bisphenol, A Electrochemical Sensor using Graphene Oxide and beta-cyclodextrin-functionalized multi-walled Carbon Nanotubes. Anal. Chem. 92(7), 5532–5539 (2020)

    Article  CAS  PubMed  Google Scholar 

  87. M.Y. Ali, A.U. Alam, M.M.R. Howlader, Fabrication of highly sensitive Bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin. Sensors and Actuators B: Chemical 320 (2020)

  88. N.S. Zulkafflee, N.A. Mohd Redzuan, S. Nematbakhsh, J. Selamat, M.R. Ismail, S.M. Praveena, Y. Lee, S., and A. Razis, A. F. Heavy metal contamination in Oryza sativa L. at the Eastern Region of Malaysia and its risk Assessment. Int J Environ Res Public Health 19 (2) (2022)

  89. S. Palisoc, R.I.M. Vitto, M. Natividad, Determination of Heavy Metals in Herbal Food supplements using Bismuth/Multi-walled Carbon Nanotubes/Nafion modified Graphite Electrodes sourced from Waste Batteries. Sci. Rep. 9(1), 18491 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. W. Wu, M. Jia, Z. Zhang, X. Chen, Q. Zhang, W. Zhang, P. Li, L. Chen, Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicol. Environ. Saf. 175, 243–250 (2019)

    Article  CAS  PubMed  Google Scholar 

  91. P. Mehrotra, Biosensors and their applications - a review. J. Oral Biol. Craniofac. Res. 6(2), 153–159 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  92. F. Arduini, S. Guidone, A. Amine, G. Palleschi, D. Moscone, Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens. Actuators B 179, 201–208 (2013)

    Article  CAS  Google Scholar 

  93. Y. Li, R. Zhao, L. Shi, G. Han, Y. Xiao, Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides. RSC Adv 7(84), 53570–53577 (2017)

    Article  CAS  Google Scholar 

  94. S. Nagabooshanam, A.T. John, S. Wadhwa, A. Mathur, S. Krishnamurthy, L.M. Bharadwaj, Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates. Food Chem. 323, 126784 (2020)

    Article  CAS  PubMed  Google Scholar 

  95. J.J. Xia et al., Acetylcholinesterase biosensors based on ionic liquid functionalized carbon nanotubes and horseradish peroxidase for monocrotophos determination. Bioproc Biosyst Eng 43, 293–301 (2020)

    Article  CAS  Google Scholar 

  96. B. Zou, Y.H. Chu, J.J. Xia, J. Yao, Acetylcholinesterase biosensor based on functionalized surface of carbon nanotubes for monocrotophos detection. Anal. Biochem. 560, 12–18 (2018)

    Article  Google Scholar 

  97. B. Chen, X. Wang, Combined Approach for determining Diuron in Sugarcane and Soil: Ultrasound-Assisted extraction, Carbon Nanotube-Mediated purification, and Gas Chromatography-Electron capture detection. J. Food Sci. 84(9), 2402–2411 (2019)

    Article  CAS  PubMed  Google Scholar 

  98. Z. Lu, Z. Zhang, N. Fang, Z. Hou, Y. Li, Z. Lu, Simultaneous determination of five Diamide Insecticides in Food Matrices using Carbon Nanotube Multiplug Filtration cleanup and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 67(39), 10977–10983 (2019)

    Article  CAS  PubMed  Google Scholar 

  99. S. Zakharov, J. Csomor, P. Urbanek, D. Pelclova, Toxic epidermal Necrolysis after exposure to Dithiocarbamate Fungicide Mancozeb. Basic. Clin. Pharmacol. Toxicol. 118(1), 87–91 (2016)

    Article  CAS  PubMed  Google Scholar 

  100. R. Iorio, A. Castellucci, G. Rossi, B. Cinque, M.G. Cifone, G. Macchiarelli, S. Cecconi, Mancozeb affects mitochondrial activity, redox status and ATP production in mouse granulosa cells. Toxicol. In Vitro 30(1 Pt B), 438–445 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. R. Zamora-Sequeira, F. Alvarado-Hidalgo, D. Robles-Chaves, G. Saenz-Arce, E.D. Avendano-Soto, A. Sanchez-Kopper, R. Starbird-Perez, Electrochemical characterization of Mancozeb Degradation for Wastewater Treatment using a Sensor based on poly (3,4-ethylenedioxythiophene) (PEDOT) modified with Carbon Nanotubes and Gold nanoparticles. Polymers (Basel) 11 (9) (2019)

  102. M.M. Melough, D.B. Day, A.M. Fretts, S. Wang, J.T. Flynn, I.H. de Boer, H. Zhu, K. Kannan, S. Sathyanarayana, Associations of Dietary Intake with urinary melamine and derivative concentrations among children in the GAPPS Cohort. Int J Environ Res Public Health 19 (9) (2022)

  103. S. Xu, G. Lin, W. Zhao, Q. Wu, J. Luo, W. Wei, X. Liu, Y. Zhu, Necklace-like molecularly imprinted Nanohybrids based on polymeric nanoparticles decorated Multiwalled Carbon Nanotubes for highly sensitive and selective melamine detection. ACS Appl. Mater. Interfaces 10(29), 24850–24859 (2018)

    Article  CAS  PubMed  Google Scholar 

  104. H. Yu, Z. Wang, R. Wu, X. Chen, T.D. Chan, Water-dispersible pH/thermo dual-responsive microporous polymeric microspheres as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples and food samples. J. Chromatogr. A 1601, 27–34 (2019)

    Article  CAS  PubMed  Google Scholar 

  105. F. Xu, F. Liu, C. Wang, Y. Wei, Use of phenyl/tetrazolyl-functionalized magnetic microspheres and stable isotope labeled internal standards for significant reduction of matrix effect in determination of nine fluoroquinolones by liquid chromatography-quadrupole linear ion trap mass spectrometry. Anal. Bioanal Chem. 410(6), 1709–1724 (2018)

    Article  CAS  PubMed  Google Scholar 

  106. M. Zhang, J. Chen, F. Zhao, B. Zeng, Determination of fluoroquinolones in foods using ionic liquid modified Fe3O4/MWCNTs as the adsorbent for magnetic solid phase extraction coupled with HPLC. Anal. Methods 12(36), 4457–4465 (2020)

    Article  CAS  PubMed  Google Scholar 

  107. J. Li, A.S. Phadnis-Moghe, R.B. Crawford, N.E. Kaminski, Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis. Toxicology 378, 17–24 (2017)

    Article  CAS  PubMed  Google Scholar 

  108. D. Guo, S. Wu, X. Xu, X. Niu, X. Li, Z. Li, J. Pan, A novel label-free hypochlorite amperometric sensor based on target-induced oxidation of benzeneboronic acid pinacol ester. Chem. Eng. J 373, 1–7 (2019)

    Article  CAS  Google Scholar 

  109. Y. Ge, M.B. Camarada, L. Xu, M. Qu, H. Liang, E. Zhao, M. Li, Y. Wen, A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol. Mikrochim Acta 185(12), 566 (2018)

    Article  PubMed  Google Scholar 

  110. X. Chen, R. Wu, L. Sun, Q. Yao, X. Chen, A sensitive solid-state electrochemiluminescence sensor for clenbuterol relying on a PtNPs/RuSiNPs/Nafion composite modified glassy carbon electrode. J. Electroanal. Chem 781, 310–314 (2016)

    Article  CAS  Google Scholar 

  111. B. Chen, J. Liu, S. Li, Y. Ren, Y. Yuan, H. Zhu, H. Li, A high-sensitivity and enzyme‐free Clenbuterol Sensor using SWCNT arrays prepared with a one‐pot method comprising gold nanoparticles and cl –. Electroanalysis 32(10), 2299–2309 (2020)

    Article  CAS  Google Scholar 

  112. A. Qileng, S. Huang, L. He, W. Qin, W. Liu, Z. Xu, Y. Liu, Composite Films of CdS Nanoparticles, MoS2 nanoflakes, reduced Graphene Oxide, and Carbon Nanotubes for Ratiometric and Modular Immunosensing-Based detection of toxins in Cereals. ACS Appl. Nano Mater. 3(3), 2822–2829 (2020)

    Article  CAS  Google Scholar 

  113. Y. Zhao, Y.C. Yuan, X.L. Bai, Y.M. Liu, G.F. Wu, F.S. Yang, X. Liao, Multi-mycotoxins analysis in liquid milk by UHPLC-Q-Exactive HRMS after magnetic solid-phase extraction based on PEGylated multi-walled carbon nanotubes. Food Chem. 305, 125429 (2020)

    Article  CAS  PubMed  Google Scholar 

  114. J.B. Renaud, J.P. Walsh, M.W. Sumarah, Simplified synthesis and Stability Assessment of aflatoxin B1-Lysine and aflatoxin G1-Lysine. Toxins (Basel) 14 (1) (2022)

  115. Y. Huang, F. Zhu, J. Guan, W. Wei, L. Zou, Label-free amperometric Immunosensor based on versatile Carbon Nanofibers Network coupled with au nanoparticles for aflatoxin B1 detection. Biosensors (Basel) 11 (1) (2020)

  116. E.S. Chan, E.M. Abrams, K.J. Hildebrand, W. Watson, Early introduction of foods to prevent food allergy. Allergy Asthma Clin Immunol 14(Suppl 2), 57 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  117. B.D. Abera, A. Falco, P. Ibba, G. Cantarella, L. Petti, P. Lugli, Development of flexible dispense-printed Electrochemical Immunosensor for aflatoxin M1 detection in milk. Sensors (Basel) 19 (18) (2019)

  118. D.K. Bwambok, N. Siraj, S. Macchi, N.E. Larm, G.A. Baker, R.L. Perez, C.E. Ayala, C. Walgama, D. Pollard, J.D. Rodriguez, S. Banerjee, B. Elzey, I.M. Warner, S.O. Fakayode, QCM sensor arrays, Electroanalytical techniques and NIR Spectroscopy coupled to Multivariate Analysis for Quality Assessment of Food Products, raw materials, ingredients and Foodborne Pathogen detection: Challenges and Breakthroughs. Sensors (Basel) 20 (23) (2020)

  119. J.N. Appaturi, T. Pulingam, K.L. Thong, S. Muniandy, N. Ahmad, B.F. Leo, Rapid and sensitive detection of Salmonella with reduced graphene oxide-carbon nanotube based electrochemical aptasensor. Anal. Biochem. 589, 113489 (2020)

    Article  CAS  PubMed  Google Scholar 

  120. J. Gao, S. He, A. Nag, J.W.C. Wong, A review of the Use of Carbon Nanotubes and Graphene-Based sensors for the detection of aflatoxin M1 compounds in milk. Sensors (Basel) 21 (11) (2021)

  121. L.N. Gomez-Arribas, E. Benito-Pena, M.D.C. Hurtado-Sanchez, M.C. Moreno-Bondi, Biosensing based on nanoparticles for Food Allergens detection. Sensors (Basel) 18 (4) (2018)

  122. T.B. Rouf, S. Díaz-Amaya, L. Stanciu, J. Kokini, Application of corn zein as an anchoring molecule in a carbon nanotube enhanced electrochemical sensor for the detection of gliadin. Food Control 117 (2020)

  123. F.S. Felix, L. Angnes, Electrochemical immunosensors - a powerful tool for analytical applications. Biosens. Bioelectron. 102, 470–478 (2018)

    Article  CAS  PubMed  Google Scholar 

  124. J. Molinari, L. Florez, A. Medrano, L. Monsalve, G. Ybarra, Electrochemical determination of beta-lactoglobulin employing a polystyrene bead-modified Carbon Nanotube Ink. Biosensors (Basel) 8 (4) (2018)

  125. A. Luparelli, I. Losito, E. De Angelis, R. Pilolli, F. Lambertini, L. Monaci, Tree nuts and Peanuts as a source of Beneficial Compounds and a threat for allergic consumers: overview on methods for their detection in Complex Food Products. Foods 11 (5) (2022)

  126. A. Sobhan, J.-H. Oh, M.-K. Park, S.W. Kim, C. Park, J. Lee, Single walled carbon nanotube based biosensor for detection of peanut allergy-inducing protein ara h1. Korean J. Chem. Eng 35(1), 172–178 (2017)

    Article  Google Scholar 

  127. A. Sobhan, J.H. Oh, M.K. Park, J. Lee, Detection of Peanut Allergen Ara h 6 in commercially processed Foods using a single-walled Carbon Nanotube-Based Biosensor. J. AOAC Int. 101(5), 1558–1565 (2018)

    Article  CAS  PubMed  Google Scholar 

  128. A. Sobhan, J.-H. Oh, M.-K. Park, J. Lee, Reusability of a single-walled carbon nanotube-based biosensor for detecting peanut allergens and Y. enterocolitica. Microelectronic Engineering 225 (2020)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32271979).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Xie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Cao, Y., Chen, M. et al. Recent advances in CNTs-based sensors for detecting the quality and safety of food and agro-product. Food Measure 17, 3061–3075 (2023). https://doi.org/10.1007/s11694-023-01850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01850-7

Keywords

Navigation