Skip to main content

Carbohydrate Analysis

  • Chapter
  • First Online:
Food Analysis

Part of the book series: Food Science Text Series ((FSTS))

Abstract

This chapter covers the principles, procedures, and applications of carbohydrates analysis commonly used for nutrition labeling, quality assurance, or research for food ingredients and/or products. While chromatographic methods have largely replaced many older methods, some older methods continue to be commonly used for research and quality assurance [e.g., colorimetric methods for total carbohydrate (phenol-sulfuric acid method), various reducing sugar methods (e.g., Somogyi-Nelson method), and physical measurements (based on specific gravity or refractive index)]. Chromatographic methods (high-performance liquid chromatography and gas chromatography) separate mixtures into their component sugars, identify each component by retention time, and provide a measurement of the quantity of each component. Enzymic methods are specific and sensitive, but seldom, except in the case of starch, is determination of only a single component desired. In the absence of a universal procedure for analysis of most polysaccharides, their analysis generally involves isolation followed by identification based on hydrolysis to constituent monosaccharides and their determination. An exception is starch, which can be measured specifically by digestion to glucose using specific enzymes (amylases), followed by measurement of the glucose released. Insoluble dietary fiber, soluble dietary fiber, and total dietary fiber are each composed primarily of non-starch polysaccharides. Methods for the determination of total dietary fiber and its components rely on removal of the digestible starch using amylases and removal of digestible protein with a protease, leaving a non-digestible residue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. BeMiller JN (2007) Carbohydrate Chemistry for Food Scientists, 2nd edn. AACC International, St. Paul, MN

    Google Scholar 

  2. BeMiller JN, Huber K (2017) Carbohydrates (Chap 4). In: Damodaran S, Parkin KL, Fennema OR (eds), Food Chemistry, 5th edn. Marcel Dekker, New York

    Google Scholar 

  3. FAO/WHO expert consultation on carbohydrates in human nutrition. 14–18 April 1997, Rome

    Google Scholar 

  4. AOAC International (Online) Official Methods of Analysis. AOAC International, Gaithersburg, MD

    Google Scholar 

  5. Peris-Tortajada M (2004) Carbohydrates and starch (Chap 13). In: Nollet LML (ed) Handbook of Food Analysis, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  6. Anon. (2016) Code of Federal Regulations, Title 21, Part 101.9 – Food Nutrition Labeling of Food. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  7. USDA (2016) USDA Nutrient Database for Standard Reference. Release 28, 2016. http://ndb.nal.usda.gov

  8. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350

    CAS  Google Scholar 

  9. Wood TM (1994) Enzymic conversion of cellulose into d-glucose. Methods in Carbohydrate Chemistry 10:219.

    CAS  Google Scholar 

  10. Miller G, Blum R, Glennon WEG, Burton A. (1960.) Measurement of carboxymethylcellulase activity. Analytical Biochemistry 1:127

    CAS  Google Scholar 

  11. El Rassi Z (ed) (1995) Carbohydrate analysis. Journal of Chromatography Library vol 58

    Google Scholar 

  12. Andersen R, Sørensen A (2000) Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography A 897:195

    CAS  PubMed  Google Scholar 

  13. Hanko VP, Rohrer JS (2000) Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Biochemistry 283:192

    CAS  PubMed  Google Scholar 

  14. Cataldi TRI, Campa C, DeBenedetto GE (2000) Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: The potential is still growing. Fresenius’ Journal of Analytical Chemistry 368:7391

    Google Scholar 

  15. Zhang Y, Lee YC (2002) High-performance anion-exchange chromatography of carbohydrates on pellicular resin columns. Journal of Chromatography Library 66:207

    CAS  Google Scholar 

  16. Soga T (2002) Analysis of carbohydrates in food and beverages by HPLC and CE. Journal of Chromatography Library 66:483

    CAS  Google Scholar 

  17. Montero CM, Dodero MCR, Sánchez DAG, Barroso CG (2004) Analysis of low molecular weight carbohydrates in foods and beverages: A review. Chromatographia 59:15

    CAS  Google Scholar 

  18. Corradini C, Cavazza A, Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. International Journal of Carbohydrate Chemistry 487564

    Google Scholar 

  19. Peris-Tortajada M (2012) HPLC determination of carbohydrates in foods (Chap 7) In: Nollet LM, Toldra F (eds) Food analysis by HPLC, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  20. Yan X (2014) High-performance liquid chromatography for carbohydrate analysis (Chap 3) In: Zuo Y (ed) High-performance liquid chromatography (HPLC). Nova Science Publishers, Hauppauge, NY

    Google Scholar 

  21. Ammeraal RN, Delgado GA, Tenbarge FL, Friedman RB (1991) High-performance anion-exchange chromatography with pulsed amperometric detection of linear and branched glucose oligosaccharides. Carbohydrate Research 215:179

    CAS  Google Scholar 

  22. Marioli JM (2001) Electrochemical detection of carbohydrates in HPLC. Current Topics in Electrochemistry 8:43

    CAS  Google Scholar 

  23. LaCourse WR. (2002) Pulsed electrochemical detection of carbohydrates at noble metal electrodes following liquid chromatographic and electrophoretic separation. Journal of Chromatography Library 66:905

    CAS  Google Scholar 

  24. Baldwin RP (2002) Electrochemical detection of carbohydrates at constant potential after HPLC and CE separations. Journal of Chromatography Library 66:947

    CAS  Google Scholar 

  25. LaCourse WR (2009) Advances in pulsed electrochemical detection for carbohydrates. Advances in Chromatography 47:247

    CAS  Google Scholar 

  26. Kazmaier T, Roth S, Zapp J, Harding M, Kuhn R (1998) Quantitative analysis of malto-oligosaccharides by MALDI-TOF mass spectrometry, capillary electrophoresis and anion exchange chromatography. Fresenius’ Journal of Analytical Chemistry 361:473

    CAS  Google Scholar 

  27. Dvořácková E, Šnóblová M, Hrdlička P (2014) Carbohydrate analysis: from sample preparation to HPLC on different stationary phases coupled with evaporative light-scattering detection. Journal of Separation Science 37:323

    PubMed  Google Scholar 

  28. Churms SC (1995) High performance hydrophilic interaction chromatography of carbohydrates with polar sorbents (Chap 3). In: reference 11

    Google Scholar 

  29. Ball GFM (1990) The application of HPLC to the determination of low molecular weight sugar and polyhydric alcohols in foods: a review. Food Chem 35: 117

    CAS  Google Scholar 

  30. Hernandez-Hernandez O, Moreno FJ, Sanz ML (2012) Analysis of dietary sugars in beverages by gas chromatography. Food and Nutritional Components in Focus 3:208

    CAS  Google Scholar 

  31. Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I (2011) Derivatization of carbohydrates for GC and GC-MS analyses. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 879: 1226

    CAS  PubMed  Google Scholar 

  32. Fox A, Morgan SL, Gilbart J (1989) Preparation of alditol acetates and their analysis by gas chromatography (GC) and mass spectrometry (MS) (Chap 5). In: Biermann CJ, McGinnis GD (ed) Analysis of carbohydrates by GLC and MS. CRC Press, Boca Raton

    Google Scholar 

  33. Fox A (2002) A current perspective on analysis of sugar monomers using GC-MS and GC-MS/MS. Journal of Chromatography Library 66:829

    CAS  Google Scholar 

  34. van Leeuwen KA, Prenzler PD, Ryan D, Camin F (2014) Gas chromatography-combustion-isotope ratio mass spectrometry for traceability and authenticity in foods and beverages. Comprehensive Reviews in Food Science and Food Safety 13:814

    Google Scholar 

  35. BeMiller JN (ed) (1994) Methods in carbohydrate chemistry, vol 10 Enzymic Methods. John Wiley, New York

    Google Scholar 

  36. Bergmeyer HU (ed) (1984) Methods of Enzymatic Analysis, vol 6 Metabolites 1: Carbohydrates, 3rd edn. Verlag Chemie, Weinheim, Germany

    Google Scholar 

  37. Cabálková, J., Žídková, J., Přibyla, L., and Chmelík, J. (2004) Determination of carbohydrates in juices by capillary electrophoresis, high-performance liquid chromatography, and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 25:487

    PubMed  Google Scholar 

  38. Thibault P, Honda S (eds) (2003) Capillary Electrophoresis of carbohydrates, Methods in Molecular Biology, vol 213

    Google Scholar 

  39. Cortacero-Ramírez S, Segura-Carretero A, Cruces-Blanco C, Hernáinz-Bermúdez de Castro M, Fernandez-Gutiérrez A (2004) Analysis of carbohydrates in beverages by capillary electrophoresis with precolumn derivatization and UV detection. Food Chemistry 87:471

    Google Scholar 

  40. Ramírez SC, Carretero S, Blanco CC, de Castro MHB, Gutiérrez AF (2005) Indirect determination of carbohydrates in wort samples and dietetic products by capillary electrophoresis. Journal of the Science of Food and Agriculture 85:517

    Google Scholar 

  41. Ma S, Lau W, Keck RG, Briggs JB, Jones AJS, Moorhouse K, Nashabeh W (2005) Capillary electrophoresis of carbohydrates derivatized with fluorophoric compounds. Methods in Molecular Biology 308:397

    CAS  PubMed  Google Scholar 

  42. Momenbeik F, Johns C, Breadmore MC, Hilder EF, Macka M, Haddad PR (2006) Sensitive determination of carbohydrates labelled with p-nitroaniline by capillary electrophoresis with photometric detection using a 406 nm light-emitting diode. Electrophoresis 27:4039

    CAS  PubMed  Google Scholar 

  43. Volpi N (ed) (2011) Capillary electrophoresis of carbohydrates. From monosaccharides to complex polysaccharides. Humana Press, New York.

    Google Scholar 

  44. Asp N-G, Björck I (1992) Resistant starch. Trends in Food Science and Technology 3:111

    CAS  Google Scholar 

  45. Perera A, Meda V, Tyler RT (2010) Resistant starch: a review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Research International 43:1959

    CAS  Google Scholar 

  46. BeMiller JN (2016) Gums/hydrocolloids: analytical aspects (Chap 6). In: Eliasson A-C (ed) Carbohydrates in Food, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  47. Baird JK (1993) Analysis of gums in foods (Chap 23). In: Whistler RL, BeMiller JN (eds) Industrial Gums, 3rd edn. Academic, San Diego

    Google Scholar 

  48. Harris P, Morrison A, Dacombe C (1995) A practical approach to polysaccharide analysis (Chap 18). In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York

    Google Scholar 

  49. Biermann CJ (1989) Hydrolysis and other cleavage of glycosidic linkages (Chap 3). In: Biermann CJ, McGinnis GD (ed) Analysis of carbohydrates by GLC and MS. CRC Press, Boca Raton

    Google Scholar 

  50. Fillisetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronic acid without interference from neutral sugars. Analytical Biochemistry 197:157

    Google Scholar 

  51. Ibarz A, Pagán A, Tribaldo F, Pagán J (2006) Improvement in the measurement of spectrophotometric data in the m-hydroxydiphenyl pectin determination methods. Food Control 17:890

    CAS  Google Scholar 

  52. Yapo BM (2012) On the colorimetric-sulfuric acid analysis of uronic acids in food materials: potential sources of discrepancies in data and how to circumvent them. Food Analytical Methods 5:195

    Google Scholar 

  53. Baker RA (1997) Reassessment of some fruit and vegetable pectin levels. Journal of Food Science 62:225

    CAS  Google Scholar 

  54. Walter RH (1991). Analytical and graphical methods for pectin (Chap 10). In: Walter RH (ed) Chemistry and technology of pectin. Academic Press, San Diego

    Google Scholar 

  55. Quemener C, Marot C, Mouillet L, Da Riz V, Diris J (2000) Ouantitative analysis of hydrocolloids in food systems by methanolysis coupled to reverse HPLC. Part 2. Pectins, alginates, and xanthan. Food Hydrocolloids 14:19

    Google Scholar 

  56. Kyriakidis NB, Psoma E (2001) Hydrocolloid interferences in the determination of pectin by the carbazole method. Journal of AOAC International 84:1947

    CAS  PubMed  Google Scholar 

  57. Gordon DT (2007) Dietary fiber definitions at risk. Cereal Foods World 52:112

    Google Scholar 

  58. McCleary BV, Prosky L (eds) (2001) Advanced dietary fibre technology, Blackwell Science, London

    Google Scholar 

  59. Anon. (2001) The definition of dietary fiber. Cereal Foods World 46:112

    Google Scholar 

  60. Institute of Medicine, Food and Nutrition Board (2005) Dietary Reference Intakes: energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein and amino acids. National Academies Press, Washington, DC

    Google Scholar 

  61. Codex Alimentarius Commission, Food and Agriculture Organization, World Health Organization (2009) Report of the 30th session of the Codex Committee on Nutrition and Foods for Special Dietary Uses. http://www.codexalimentarius.net/download/report710/al132_26e.pdf

  62. Jones JM (2014) CODEX-aligned dietary fiber definitions help to bridge the “Fiber gap”. Nutrition Journal 13:34

    PubMed  PubMed Central  Google Scholar 

  63. Juneja LR, Sakanaka S, Chu D-C (2001) Physiological and technological functions of partially hydrolysed guar gum (modified galactomannans). (Chap 30). In: McCleary BV, Prosky L (eds), Advanced dietary fibre technology. Blackwell Science, Oxford, UK

    Google Scholar 

  64. Austin S, Bhandari S, Cho F, Christiansen S, Cruijsen H, De GR, Deborde J-L, Ellingson D, Gill B, Haselberger P, et al. (2015) Fructans in infant formula and adult/pediatric nutritional formula. Journal of AOAC International 98:1038

    CAS  Google Scholar 

  65. AACC International (online) Approved Methods. AACC International, St. Paul, MN

    Google Scholar 

  66. Copikova J, Syntsya A, Cerna M, Kaasova J, Novotna M (2001) Application of FT-IR spectroscopy in detection of food hydrocolloids in confectionery jellies and food supplements. Czech Journal of Food Science 19:51

    CAS  Google Scholar 

  67. Chopin T, Whalen E (1993) A new and rapid method of carrageenan identification by FT IR diffuse reflectance spectroscopy directly on dried, ground algal material. Carbohydrate Research 246:51

    CAS  Google Scholar 

  68. Cerna M, Barros AS, Nunes A, Rocha SM, Delgadillo I, Copikova J, Coimbra MA (2003) Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers 51:383

    CAS  Google Scholar 

  69. Tojo E, Prado J (2003) Chemical composition of carrageenan blends determined by IR spectroscopy combined with a PLS multivariate calibration method. Carbohydrate Research 338:1309

    CAS  PubMed  Google Scholar 

  70. Prado-Fernandez J, Rodriguez-Vazquez JA, Tojo E, Andrade JM (2003) Quantitation of k-, ι-, and λ-carrageenans by mid-infrared spectroscopy and PLS regression. Analytica Chimica Acta 480:23

    CAS  Google Scholar 

  71. Monsoor MA, Kalapathy U, Proctor A (2001) Determination of polygalacturonic acid content in pectin extracts by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry 74:233

    CAS  Google Scholar 

  72. Langkilde FW, Svantesson A (1995) Identification of celluloses with Fourier-transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry. Journal of Pharmaceutical and Biomedical Analysis 13:409

    CAS  PubMed  Google Scholar 

  73. Kays SE, Barton FE II (2002) Near-infrared analysis of soluble and insoluble dietary fiber fractions of cereal food products. Journal of Agricultural and Food Chemistry 50:3024

    CAS  PubMed  Google Scholar 

  74. Mehrübeoglu M, Coté GL (1997) Determination of total reducing sugars in potato samples using near-infrared spectroscopy. Cereal Foods World 42:409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. BeMiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing

About this chapter

Cite this chapter

BeMiller, J.N. (2017). Carbohydrate Analysis. In: Nielsen, S.S. (eds) Food Analysis. Food Science Text Series. Springer, Cham. https://doi.org/10.1007/978-3-319-45776-5_19

Download citation

Publish with us

Policies and ethics