Skip to main content
Log in

Determination of total phenolic contents and antioxidant activities of fruits from wild and creole Carica papaya genotypes in comparison to commercial papaya cultivars

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Antioxidant activity (AA), total polyphenols content (TPC) and polyphenols profile (PP) were investigated during 10 days of postharvest ripening, in peels and pulps from fruits from three Carica papaya genotypes of different origin. Wild-genotype (WG) collected in Yucatan, Mexico (part of its center of origin) showed higher AA and TPC values than the commercial-genotype (CG). Likewise, PP analysis resulted in the identification and quantification of 4 families: phenolic acids, flavanols, dihydrochalcones and flavonols in both peels and pulps, as well as lignans, that were only found in fruit peels. Interestingly, fruits from WG also had higher contents than CG, in the following specific polyphenols: in peels; 5-O-Caffeoylquinic acid (chlorogenic acid) and kaempferol (both absent in CG), 4-Hydroxybenzoic acid 4-O-glucoside (3.8 times), quercetin 3-O-hexoside (3.5 times), 4-O-Caffeoylquinic acid (2.8 times), 5-O-Galloylquinic acid (2.7 times) and matairesinol (2.6 times). In pulps; 4-O-Caffeoylquinic acid (9.4 times), quercetin-3-O-rutinoside (rutin; 6.8 times), p-Coumaric acid 4-O-glucoside (p-coumaroyl hexoside; 2.5 times), p-Coumaroyl glycolic acid (2.5 times) and phloridzin (1.7 times). The superior capacity of wild native genotypes to accumulate more total polyphenols, to show higher antioxidant activity and to show even higher contents of some specific polyphenols known to have beneficial health effects (against chronic degenerative diseases such as cancer and cardiovascular diseases), might represent a good base for breeding programs aiming to obtain new varieties with superior nutraceutical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Antioxidant activity

ABTS:

2,2′-Azinobis-3-ethylbenzotiazoline-6-sulphonic-acid

C. papaya :

Carica papaya

CG:

Commercial-genotype

CrG:

Creole-genotype

DPPH:

2,2′-Diphenyl-1-116 picrylhydrazyl

DW:

Dry weight

FW:

Fresh weight

G:

Green stage

GA:

Gallic acid

GAE:

Gallic acid equivalents

PP:

Polyphenols profile

RP:

Reducing power

TE:

Trolox equivalents

TPC:

Total polyphenol content

UPLC:

Ultra-performance liquid chromatography

WG:

Wild-genotype

References

  1. C. Santos-Buelga, A. Scalbert, Proanthocyanidins and tannin-like compounds—nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 80, 1094–1117 (2000). https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7%3c1094::AID-JSFA569%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  2. D. Del Rio, A. Rodriguez-Mateos, J.P. Spencer, M. Tognolini, G. Borges, A. Crozier, Dietary (Poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal 18(14), 1818–1892 (2012). https://doi.org/10.1089/ars.2012.4581

    Article  CAS  PubMed  Google Scholar 

  3. I. Urquiaga, F. Leighton, Plant polyphenol antioxidants and oxidative stress. Biol. Res. 33, 55–64 (2000). https://doi.org/10.4067/s0716-97602000000200004

    Article  CAS  PubMed  Google Scholar 

  4. M. La Marca, P. Beffy, A. Pugliese, V. Longo, Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes. PLoS ONE 8(12), e83538 (2013). https://doi.org/10.1371/journal.pone.0083538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Scalbert, C. Manach, C. Morand, C. Rémésy, L. Jiménez, Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45(4), 287–306 (2005). https://doi.org/10.1080/1040869059096

    Article  CAS  PubMed  Google Scholar 

  6. O.R. Alara, N.H. Abdurahman, J.A. Alara, Carica papaya: comprehensive overview of the nutritional values, phytochemicals and pharmacological activities. Adv. Tradit. Med. (2020). https://doi.org/10.1007/s13596-020-00481-3

    Article  Google Scholar 

  7. E.H.K. Ikram, R. Stanley, M. Netzel, K. Fanning, Phytochemicals of papaya and its traditional health and culinary uses—a review. J. Food Compos. Anal. 41, 201–211 (2015). https://doi.org/10.1016/j.jfca.2015.02.010

    Article  CAS  Google Scholar 

  8. Q.V. Vuong, S. Hirun, P.D. Roach, M.C. Bowyer, P.A. Phillips, C.J. Scarlett, Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 3(3), 104–111 (2013). https://doi.org/10.1016/j.hermed.2013.04.004

    Article  Google Scholar 

  9. K. Zhou, H. Wang, W. Mei, X. Li, Y. Luo, H. Dai, Antioxidant activity of papaya seed extracts. Molecules 16(8), 6179–6192 (2011). https://doi.org/10.3390/molecules16086179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L.E. Gayosso-García Sancho, E.M. Yahia, G.A. González-Aguilar, Identification and quantification of phenols, carotenoids, and vitamin C from papaya (Carica papaya L., cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Res. Int. 44(5), 1284–1291 (2011). https://doi.org/10.1016/j.foodres.2010.12.001

    Article  CAS  Google Scholar 

  11. D.M. Rivera-Pastrana, E.M. Yahia, G.A. González-Aguilar, Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J. Sci. Food Agric. 90(14), 2358–2365 (2010). https://doi.org/10.1002/jsfa.4092

    Article  CAS  PubMed  Google Scholar 

  12. T.J. O’Hare, D.J. Williams, Papaya as a medicinal plant, in Genetics and Genomics of Papaya: Crops and Models. ed. by R. Ming, P.H. Moore (Springer, New York, 2014), pp. 391–407

    Chapter  Google Scholar 

  13. A. Hee-Young, C. Hyun-Dong, C. Young-Su, Comparison of antioxidant effect and phenolic compounds in tropical fruits. SN Appl. Sci. 2, 1120 (2020). https://doi.org/10.1007/s42452-020-2927-5

    Article  CAS  Google Scholar 

  14. G. Fuentes, J. Santamaría, Papaya (Carica papaya L.): origin, domestication, and production, in Genetics and Genomics of Papaya: Crops and Models. ed. by R. Ming, P.H. Moore (Springer, New York, 2014), pp. 3–15

    Chapter  Google Scholar 

  15. U. Tiwari, E. Cummins, Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. 50(2), 497–506 (2013). https://doi.org/10.1016/j.foodres.2011.09.007

    Article  CAS  Google Scholar 

  16. W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol. 28(1), 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  17. N.J. Miller, C. Rice-Evans, M.J. Davies, V. Gopinathan, A. Milner, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84(4), 407–407 (1993). https://doi.org/10.1042/cs0840407

    Article  CAS  Google Scholar 

  18. M. Oyaizu, Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44(6), 307–315 (1986)

    Article  CAS  Google Scholar 

  19. L.E. Gayosso-García Sancho, E.M. Yahia, M.A. Martínez-Téllez, G.A. González-Aguilar, Effect of maturity stage of papaya maradol on physiological and biochemical parameters. Am. J. Agric. Biol. Sci. 5(2), 194–203 (2010). https://doi.org/10.3844/ajabssp.2010.194.203

    Article  Google Scholar 

  20. L. Fu, B.-T. Xu, X.-R. Xu, R.-Y. Gan, Y. Zhang, E.-Q. Xia, H.-B. Li, Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 129(2), 345–350 (2013). https://doi.org/10.1016/j.foodchem.2011.04.079

    Article  CAS  Google Scholar 

  21. R. Rajamurugan, N. Selvaganabathy, S. Kumaravel, C.H. Ramamurthy, V. Sujatha, C. Thirunavukkarasu, Polyphenol contents and antioxidant activity of Brassica nigra (L.) Koch. leaf extract. Nat. Prod. Res. 26(23), 2208–2210 (2012). https://doi.org/10.1080/14786419.2011.637215

    Article  CAS  PubMed  Google Scholar 

  22. H.V. Annegowda, R. Bhat, K.J. Yeong, M.T. Liong, A.A. Karim, S.M. Mansor, Influence of drying treatments on polyphenolic contents and antioxidant properties of raw and ripe papaya (Carica papaya L.). Int. J. Food Prop. 17(2), 283–292 (2014). https://doi.org/10.1080/10942912.2011.631248

    Article  CAS  Google Scholar 

  23. M.M.B. Almeida, P.E.M. de Sousa, A.M.C. Arriaga, G.M. do Prado, C.E.C. Magalhães, G.A. Maia, T.L.G. de Lemos, Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 44(7), 2155–2159 (2011). https://doi.org/10.1016/j.foodres.2011.03.051

    Article  CAS  Google Scholar 

  24. J. Gruz, F.A. Ayaz, H. Torun, M. Strnad, Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 124(1), 271–277 (2011). https://doi.org/10.1016/j.foodchem.2010.06.030

    Article  CAS  Google Scholar 

  25. C.M.B. Omena, I.B. Valentim, G.D.S. Guedes, L.A. Rabelo, C.M. Mano, E.J.H. Bechara, A.C.H.F. Sawaya, M.T.S. Trevisan, J.G. da Costa, R.C.S. Ferreira, A.E.G. SantˈAna, M.O.F. Goulart, Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits: antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Res. Int. 49(1), 334–344 (2012). https://doi.org/10.1016/j.foodres.2012.07.010

    Article  CAS  Google Scholar 

  26. E.M. Kuskoski, A.G. Asuero, M.T. Morales, R. Fett, Frutos tropicais silvestres e polpas de frutas congeladas: atividade antioxidante, polifenóis e antocianinas. Ciênc. Rural 36(4), 1283–1287 (2006). https://doi.org/10.1590/S0103-84782006000400037

    Article  Google Scholar 

  27. F. Saidani, R. Giménez, C. Aubert, G. Chalot, J.A. Betrán, Y. Gogorcena, Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. J. Food Compos. Anal. 62(3), 126–133 (2017). https://doi.org/10.3390/ijms16035762

    Article  CAS  Google Scholar 

  28. D.R. Morais, E.M. Rotta, S.C. Sargi, E.M. Schmidt, E.G. Bonafe, M.N. Eberlin, A.C. Sawaya, J.V. Visentainer, Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 77(3), 392–399 (2015). https://doi.org/10.1016/j.foodres.2015.08.036

    Article  CAS  Google Scholar 

  29. A.Y. Coulibaly, R. Hashim, S.F. Sulaiman, O. Sulaiman, L.Z.P. Ang, K.L. Ooi, Bioprospecting medicinal plants for antioxidant components. Asian Pac. J. Trop. Med. 7, S553–S559 (2014). https://doi.org/10.1016/S1995-7645(14)60289-3

    Article  CAS  Google Scholar 

  30. C.J. Nieto, M. Cueto, A. Farroni, M. Pla, L.N. Gerschenson, Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L.). J. Funct. Foods 27, 319–328 (2016). https://doi.org/10.1016/j.jff.2016.09.012

    Article  CAS  Google Scholar 

  31. V. Zunjar, D. Mammen, B.M. Trivedi, Antioxidant activities and phenolics profiling of different parts of Carica papaya by LCMS-MS. Nat. Prod. Res. 29(22), 2097–2099 (2015). https://doi.org/10.1080/14786419.2014.986658

    Article  CAS  PubMed  Google Scholar 

  32. D. Kitts, Y. Yuan, A. Wijewickreme, L. Thompson, Antioxidative activity of the flaxseed lignan secosiolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol. Cell. Biochem. 202(1–2), 91–100 (1999). https://doi.org/10.1023/a:1007022329660

    Article  CAS  PubMed  Google Scholar 

  33. U.A. Fischer, A.V. Jaksch, R. Carle, D.R. Kammerer, Determination of lignans in edible and nonedible parts of pomegranate (Punica granatum L.) and products derived therefrom, particularly focusing on the quantitation of isolariciresinol using HPLC-DAD-ESI/MSn. J. Agric. Food Chem. 60(1), 283–292 (2012). https://doi.org/10.1021/jf203598m

    Article  CAS  PubMed  Google Scholar 

  34. P. Johnsson, N. Peerlkamp, A. Kamal-Eldin, R.E. Andersson, R. Andersson, L.N. Lundgren, P. Aman, Polymeric fractions containing phenol glucosides in flaxseed. Food Chem. 76(2), 207–212 (2002). https://doi.org/10.1016/S0308-8146(01)00269-2

    Article  CAS  Google Scholar 

  35. J.M. Harnly, R.F. Doherty, G.R. Beecher, J.M. Holden, D.B. Haytowitz, S. Bhagwat, S. Gebhardt, Flavonoid content of U.S. fruits, vegetables, and nuts. J. Agric. Food Chem. 54(26), 9966–9977 (2006). https://doi.org/10.1021/jf061478a

    Article  CAS  PubMed  Google Scholar 

  36. I.C. Arts, B. Van de Putte, P.C. Hollman, Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem. 48(5), 1746–1751 (2000). https://doi.org/10.1021/jf000025h

    Article  CAS  PubMed  Google Scholar 

  37. M.P. Marinovic, A.C. Morandi, R. Otton, Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFκB p65 signal pathway. Toxicol. In Vitro 29(7), 1766–1778 (2015). https://doi.org/10.1016/j.tiv.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  38. L. Bai, S. Guo, Q. Liu, X. Cui, X. Zhang, L. Zhang, X. Yang, M. Hou, H. Chi-Tang, N. Bai, Characterization of nine polyphenols in fruits of Malus pumila mill by high-performance liquid chromatography. J. Food Drug Anal. 24(2), 293–298 (2016). https://doi.org/10.1016/j.jfda.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  39. S. Kandakumar, V. Manju, Pharmacological applications of isorhamnetin: a short review. IJTSRD 1(4), 672–678 (2017)

    Article  Google Scholar 

  40. J. Lako, C.V. Trenerry, M. Wahlqvist, N. Wattanapenpaiboon, S. Sotheeswaran, R. Premier, Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 101(4), 1727–1741 (2007). https://doi.org/10.1016/j.foodchem.2006.01.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To CONACYT for the Grant No. CB221208 given to JSF and the PhD Scholarship No. 362319 given to ACL. To Mr. José Arjona for donating the commercial fruits used in the present study. To Canadian Bureau for International Education (CBIE) as well as Foreign Affairs and International Trade Canada (DFAIT) for having awarded ACL the Emerging Leaders in the Americas Program (ELAP) scholarship. We also acknowledge the use of the lab facilities at INAF, Quebec Canada.

Author information

Authors and Affiliations

Authors

Contributions

AC-L, performed the experiments, wrote the first draft of the manuscript. HE-M, GFO, VM-H, CC-C, ES-D, conceived, designed the experiments, analyzed data and reviewed the manuscript. PD, YD, designed the PP experiments and contribute to the writing of the manuscript. JMS, corresponding author, general conception of the project and responsible for writing the final manuscript. All authors have read the final manuscript and approved its submission.

Corresponding author

Correspondence to Jorge M. Santamaría.

Ethics declarations

Conflict of interest

No conflict of interest among the author and coauthors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan-León, A., Estrella-Maldonado, H., Dubé, P. et al. Determination of total phenolic contents and antioxidant activities of fruits from wild and creole Carica papaya genotypes in comparison to commercial papaya cultivars. Food Measure 15, 5669–5682 (2021). https://doi.org/10.1007/s11694-021-01121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01121-3

Keywords

Navigation