Skip to main content

Enzymatic Browning of Fruit and Vegetables: A Review

  • Chapter
  • First Online:
Enzymes in Food Technology

Abstract

Enzymatic browning in fruits and vegetables occurs by exposure to the air after cutting and slicing and in pulped states, mechanical damage during transportation, and thawing of frozen or cold stored foods. Polyphenol oxidase (PPO) and peroxidase (POD) are the main enzymes responsible for browning. PPO is classified as an oxidoreductase enzyme with four atoms of copper as a prosthetic group. It catalyzes the oxidation of functional OH group attached to the carbon atom of the benzene ring of monohydroxy phenols (phenol, tyrosine, p-cresol) to o-dihydroxy phenols (catechol, dopamine, adrenalin) and dehydrogenation of o-dihydroxy phenols to o-quinones. The oxidation of phenolic compounds to quinones and production of melanin give rise to a dark color in the foods. The POD is thermostable enzyme that belongs to a group of oxidases that use H2O2 as a catalyst for oxidation of phenolic compounds. The POD is related to undesirable changes in flavor, texture, color, and the nutritional quality of foods. The level of PPO and POD varies in fruits and vegetables and their content changes with maturity and senescence depending upon the ratio of bounded and soluble enzymes. Change in color of fruits and vegetables by enzymatic reactions is a major problem during harvesting, transportation, storage, and processing. Color deterioration, off-flavor, and loss of nutritive value in foods are unacceptable to the consumers. The purpose of this chapter is to provide information available in the literature on PPO and POD in different fruits and vegetables, their role in browning/color changes, and available prevention methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiot MJ, Tacchini M, Aubert S, Nicolas J (1992) Phenolic composition and browning susceptibility of various apple cultivars at maturity. J Food Sci 57(4):958–962

    Article  CAS  Google Scholar 

  • Arias E, Gonzalez J, Oria R, Lopez-Buesa P (2007) Ascorbic acid and 4-hexylresorcinol effects on pear PPO and PPO catalyzed browning reaction. J Food Sci 72:C422–C429

    Article  CAS  PubMed  Google Scholar 

  • Bachem CW, Hoeven RS, Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9(5):745–753

    Article  CAS  PubMed  Google Scholar 

  • Bird CR, Ray JA (1991) Manipulation of plant gene expression by antisense RNA. Biotechnol Genet Eng Rev 9:207–227

    CAS  PubMed  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Wei CI, Marshall MR (1991) Inhibitory mechanism of kojic acid on polyphenol oxidases. J Agric Food Chem 39:1897–1901

    Article  CAS  Google Scholar 

  • Chutintrasri B, Noomhorm A (2006) Thermal inactivation of polyphenol oxidase in pineapple puree. LWT-Food Sci Technol 39(5):492–495

    Article  CAS  Google Scholar 

  • Coetzer C (2001) Control of enzymic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase. J Agric Food Chem 49:652–657

    Article  CAS  PubMed  Google Scholar 

  • Convey J, Castaigne F, Picaroift G, Vovan X (1983) Mass transfer consideration in the osmotic dehydration of apples. Can Inst Food Sci Technol J 16:25–29

    Article  Google Scholar 

  • Degl’Innocenti E, Guidi L, Pardossi A, Tognoni F (2005) Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. Acephala). J Agric Food Chem 53(26):9980–9984

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Wrolstad RE, Sugar D (2000) Extending shelf life of fresh-cut pears. J Food Sci 65:181–186

    Article  CAS  Google Scholar 

  • Dudley ED, Hotchkiss JH (1989) Cysteine as an inhibitor of polyphenol oxidase. J Food Biochem 13:65–75

    Article  CAS  Google Scholar 

  • Dunford HB, Stillman JS (1976) On the function and mechanism of action of peroxidases. Coord Chem Rev 19(3):187–251

    Article  CAS  Google Scholar 

  • Espín JC, García-Ruiz PA, Tudela J, Varón R, García-Cánovas F (1998) Monophenolase and diphenolase reaction mechanisms of apple and pear polyphenol oxidases. J Agric Food Chem 46(8):2968–2975

    Article  Google Scholar 

  • Es-Safi NE, Cheynier V, Moutounet M (2003) Implication of phenolic reactions in food organoleptic properties. J Food Compos Anal 16(5):535–553

    Article  CAS  Google Scholar 

  • Ghidelli C, Rojas-Argudo C, Mateos M, Pérez-Gago MB (2013) Effect of antioxidants in controlling enzymatic browning of minimally processed persimmon ‘Rojo Brillante’. Postharvest Biol Technol 86:487–493

    Article  CAS  Google Scholar 

  • Gossinger M, Moritz S, Hermes M, Wendelin S, Scherbichler H, Halbwirth H, Stich K, Berghofer E (2009) Effects of processing parameters on colour stability of strawberry nectar from puree. J Food Eng 90:171–178

    Article  CAS  Google Scholar 

  • Guan WQ, Fan XT (2010) Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut “granny smith” apples. J Food Sci 75:M72–M77

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Beltrán JA, Swanson BG, Barbosa-Cánovas GV (2005) Inhibition of polyphenoloxidase in mango puree with 4-hexylresorcinol, cysteine and ascorbic acid. LWT-Food Sci Technol 38:625–630

    Article  CAS  Google Scholar 

  • He Q, Luo Y (2007) Enzymatic browning and its control in fresh-cut produce. Stewart Postharvest Rev 3(6):1–7

    Article  Google Scholar 

  • Hisaminato H, Murata M, Homma S (2001) Relationship between the enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis. Biosci Biotechnol Biochem 65(5):1016–1021

    Article  CAS  PubMed  Google Scholar 

  • Hunt MD, Eannetta NT, Yu H, Newman SM, Steffens JC (1993) cDNA cloning and expression of potato polyphenol oxidase. Plant Mol Biol 21(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Ioannou I, Ghoul M (2013) Prevention of enzymatic browning in fruit and vegetables. Eur Sci J 9:1857–7881

    Google Scholar 

  • Iyidogan NF, Bayiindirli A (2004) Effect of L-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. J Food Eng 62:299–304

    Article  Google Scholar 

  • Jiménez M, Garcáa-Carmona F (1997) 4-substituted resorcinols (sulfite alternatives) as slow binding inhibitors of tyrosinase catecholase activity. J Agric Food Chem 45:2061–2065

    Article  Google Scholar 

  • Jiménez M, García-Carmona F (1999) Oxidation of the flavonol quercetin by polyphenol oxidase. J Agric Food Chem 47:56–60

    Article  PubMed  Google Scholar 

  • Kahn V (1985) Effect of proteins, protein Hydrolyzates and amino acids on o-dihydroxyphenolase activity of polyphenol oxidase of mushroom, avocado, and banana. J Food Sci 50(1):111–115

    Article  CAS  Google Scholar 

  • Khan AU, Wei Y, Ahmad A, Khan ZU, Tahir K, Khan SU, Muhammad N, Khan FU, Yuan Q (2016) Enzymatic browning reduction in white cabbage, potent antibacterial and antioxidant activities of biogenic silver nanoparticles. J Mol Liq 215:39–46

    Article  CAS  Google Scholar 

  • Khunpon B, Uthaibutra J, Faiyue B, Saengnil K (2011) Reduction of enzymatic browning of harvested ‘Daw’ longan exocarp by sodium chlorite. Sci Asia 37:234–239

    Article  CAS  Google Scholar 

  • Kim MK, Lee JS, Kim KY, Lee HG (2013) Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity. Colloids Surf B Biointerfaces 103:391–394

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Linsalata V, Palmieri S, Van Sumere CF (1989) The beneficial effect of citric and ascorbic acid on the phenolic browning reaction in stored artichoke (Cynara scolymus L.) heads. Food Chem 33(2):93–106

    Article  CAS  Google Scholar 

  • Lavelli V, Caronni P (2010) Polyphenol oxidase activity and implications on the quality of intermediate moisture and dried apples. Eur Food Res Technol 231(1):93–100

    Article  CAS  Google Scholar 

  • Lindley MG (1998) The impact of food processing on antioxidants in vegetable oils, fruits and vegetables. Trends Food Sci Technol 9:336–340

    Article  CAS  Google Scholar 

  • Loaiza-Velarde JG, Tomás-Barberá FA, Saltveit ME (1997) Effect of intensity and duration of heat-shock treatments on wound-induced phenolic metabolism in iceberg lettuce. J Am Soc Hortic Sci 122(6):873–877

    CAS  Google Scholar 

  • Loomis WD, Battaile J (1966) Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5(3):423–438

    Article  CAS  Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17(10):567–575

    Article  CAS  Google Scholar 

  • Luo Y, Barbosa-Canovas GV (1997) Enzymatic browning and its inhibition in new apple cultivars slices using 4-hexylresorcinol in combination with ascorbic acid/Pardeamiento enzimático y su inhibición en rodajas de manzanas de nuevas variedades utilizando 4-hexilresorcinol en combinación con ácido ascórbico. Rev Agroquim Tecnol 3(3):195–201

    CAS  Google Scholar 

  • Marshall MR, Kim J, Wei C (2000) Enzymatic browning in fruits, vegetables and sea foods, vol 41. FAO, Rome, pp 259–312

    Google Scholar 

  • Martin-Diana AB, Rico D, Barry-Ryan C, Mulcahy J, Frias J, Henehan GT (2005) Effect of heat shock on browning-related enzymes in minimally processed iceberg lettuce and crude extracts. Biosci Biotechnol Biochem 69(9):1677–1685

    Article  CAS  PubMed  Google Scholar 

  • Matheis G, Whitaker JR (1984) Modification of proteins by polyphenol oxidase and peroxidase and their products. J Food Biochem 8(3):137–162

    Article  CAS  Google Scholar 

  • Mathew AG, Parpia HAB (1971) Food browning as a polyphenol reaction. Adv Food Res 19:75–145

    Article  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18(2):193–215

    Article  CAS  Google Scholar 

  • McEvily AJ, Iyengar R, Otwell WS (1992) Inhibition of enzymatic browning in foods and beverages. Crit Rev Food Sci Nutr 32:253–275

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Tanaka E, Minoura E, Homma S (2004) Quality of cut lettuce treated by heat shock: prevention of enzymatic browning, repression of phenylalanine ammonia lyase activity, and improvement on sensory evaluation during storage. Biosci Biotechnol Biochem 68(3):501–507

    Article  CAS  PubMed  Google Scholar 

  • Ndiaye C, Xu SY, Wang Z (2009) Steam blanching effect on polyphenoloxidase, peroxidase and colour of mango (Mangifera indica L.) slices. Food Chem 113(1):92–95

    Article  CAS  Google Scholar 

  • Nicolas J, Cheynier V, Fleuriet A, Rouet-Mayer MA (1993) Polyphenols and enzymatic browning. In: Polyphenolic phenomena. INRA Editions, Paris, pp 165–175

    Google Scholar 

  • Nicolas JJ, Richard-Forget FC, Goupy PM, Amiot MJ, Aubert SY (1994) Enzymatic browning reactions in apple and apple products. Crit Rev Food Sci Nutr 34(2):109–157

    Article  CAS  PubMed  Google Scholar 

  • Nirmal NP, Benjakul S (2012) Inhibition kinetics of catechin and ferulic acid on polyphenoloxidase from cephalothorax of Pacific white shrimp (Litopenaeus vannamei). Food Chem 131(2):569–573

    Article  CAS  Google Scholar 

  • Núñez-Delicado E, Serrano-Megías M, Pérez-López AJ, López-Nicolás JM (2005) Polyphenol oxidase from Dominga table grape. J Agric Food Chem 53(15):6087–6093

    Article  PubMed  CAS  Google Scholar 

  • Oms-Oliu G, Aguilo-Aguayo I, Martin-Belloso O (2006) Inhibition of browning on fresh-cut pear wedges by natural compounds. J Food Sci 71:S216–S224

    Article  CAS  Google Scholar 

  • Özel A, Colak A, Arslan O, Yildirim M (2010) Purification and characterisation of a polyphenol oxidase from Boletus erythropus and investigation of its catalytic efficiency in selected organic solvents. Food Chem 119(3):1044–1049

    Article  CAS  Google Scholar 

  • Özoglu H, Bayiindirli A (2002) Inhibition of enzymatic browning in cloudy apple juice with selected antibrowning agents. Food Control 13:213–221

    Article  Google Scholar 

  • Palou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J (2000) High hydrostatic pressure and minimal processing. In: Alzamora SM et al (eds) Minimally processed fruits and vegetables. Aspen, Gaithersburg, pp 205–222

    Google Scholar 

  • Peñalver MJ, Fenoll LG, Rodríguez-López JN, García-Ruiz PA, García-Molina F, Varón R, García-Cánovas F, Tudela J (2005) Reaction mechanism to explain the high kinetic autoactivation of tyrosinase. J Mol Catal B Enzym 33(1):35–42

    Article  CAS  Google Scholar 

  • Perez-Gago MB (2003) Effect of solid content and lipid content of whey protein isolate-beeswax edible coatings on color change of fresh cut apples. J Food Sci 68:2186–2191

    Article  CAS  Google Scholar 

  • Podsędek A, Wilska-Jeszka J, Anders B, Markowski J (2000) Compositional characterisation of some apple varieties. Eur Food Res Technol 210(4):268–272

    Article  Google Scholar 

  • Premakumar K, Khurduya DS (2002) Effect of microwave blanching on nutritional qualities of banana puree. J Food Sci Technol 39:258–260

    Google Scholar 

  • Queiroz C, Mendes Lopes ML, Fialho E, Valente-Mesquita VL (2008) Polyphenol oxidase: characteristics and mechanisms of browning control. Food Rev Int 24:361–375

    Article  CAS  Google Scholar 

  • Quiles A, Hernando I, Perez-Munuera I, Lluch MA (2007) Effect of calcium propionate on the microstructure and pectin methy-lesterase activity in the parenchyma of fresh-cut Fuji apples. J Agric Food Chem 87:511–519

    Article  CAS  Google Scholar 

  • Richard-Forget FC, Gauillard FA (1997) Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by combinations of pear (Pyrus communis cv. Williams) polyphenol oxidase and peroxidase: a possible involvement of peroxidase in enzymatic browning. J Agric Food Chem 45(7):2472–2476

    Article  CAS  Google Scholar 

  • Richardson T, Hyslop DB (1985) Enzymes. In: Fennema OR (ed) Food chemistry. Dekker, New York, pp 371–476

    Google Scholar 

  • Rico D, Martin-Diana AB, Barat JM, Barry-Ryan C (2007) Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends Food Sci Technol 18(7):373–386

    Article  CAS  Google Scholar 

  • Rodov V (2007) Biotechnological approaches to improving quality and safety of fresh-cut fruit and vegetable products. Proc Int Conf Qual Manago Fresh Cut Produce 746:181–193

    CAS  Google Scholar 

  • Saengnil K, Lueangprasert K, Uthaibutra J (2006) Control of enzymatic browning of harvested ‘Hong Huay’ litchi fruit with hot water and oxalic acid dips. ScienceAsia 32:345–350

    Article  CAS  Google Scholar 

  • Saltveit ME (2000) Wound-induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol Technol 21:61–69

    Article  CAS  Google Scholar 

  • Severini C, Baiano A, De Pilli T, Romaniello R, Derossi A (2003) Prevention of enzymatic browning in sliced potatoes by blanching in boiling saline solutions. LWT-Food Sci Technol 36:657–665

    Article  CAS  Google Scholar 

  • Sherf BA, Bajar AM, Kolattukudy PE (1993) Abolition of an inducible highly anionic peroxidase activity in transgenic tomato. Plant Physiol 101(1):201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevkani K, Singh N (2015) Relationship between protein characteristics and film-forming properties of kidney bean, field pea and amaranth protein isolates. Int J Food Sci Technol 50:1033–1043

    Article  CAS  Google Scholar 

  • Shivhare US, Gupta M, Basu S, Raghavan GSV (2009) Optimization of blanching process for carrots. J Food Process Eng 32(4):587–605

    Article  Google Scholar 

  • Singh JP, Kaur A, Shevkani K, Singh N (2015) Influence of jambolan (Syzygium cumini) and xanthan gum incorporation on the physicochemical, antioxidant and sensory properties of gluten-free eggless rice muffins. Int J Food Sci Technol 50:1190–1197

    Article  CAS  Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2016) Bioactive compounds in banana and their associated health benefits – a review. Food Chem 206:1–11

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh JP, Shevkani K, Singh N, Kaur A (2017a) Bioactive constituents in pulses and their health benefits. J Food Sci Technol 54(4):858–870

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017b) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    Article  CAS  PubMed  Google Scholar 

  • Soliva-Fortuny RC, Grigelmo-Miguel N, Odriozola-Serrano I, Gorinstein S, Martín-Belloso O (2001) Browning evaluation of ready-to-eat apples as affected by modified atmosphere packaging. J Agric Food Chem 49(8):3685–3690

    Article  CAS  PubMed  Google Scholar 

  • Solomon EI, Baldwin MJ, Lowery MD (1992) Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev 92(4):521–542

    Article  CAS  Google Scholar 

  • Son SM, Moon KD, Lee CW (2001) Inhibitory effects on various antibrowning agents on apple slices. Food Chem 73:23–30

    Article  CAS  Google Scholar 

  • Sotome I, Takenaka M, Koseki S, Ogasawara Y, Nadachi Y, Okadome H, Isobe S (2009) Blanching of potato with superheated steam and hot water spray. LWT-Food Sci and Technol 42(6):1035–1040

    Article  CAS  Google Scholar 

  • Subramanian N, Venkatesh P, Ganguli S, Sinkar VP (1999) Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J Agric Food Chem 47(7):2571–2578

    Article  CAS  PubMed  Google Scholar 

  • Suttirak W, Manurakchinakor S, Walailak J (2010) Potential application of ascorbic acid, citric acid and oxalic acid for browning inhibition in fresh-cut fruits and vegetables. Sci Technol 7:5–14

    Google Scholar 

  • Tien C, Vachon C, Mateescu MA, Lacroix M (2001) Milk protein coatings prevent oxidative browning of apples and potatoes. J Food Sci 66(4):512–516

    Article  Google Scholar 

  • Toivonen PMA, Brummell D (2008) Biochemical bases of appearance and textural changes in fresh-cut fruits and vegetables. Postharv Biol Technol 48:1–14

    Article  CAS  Google Scholar 

  • Tong CB, Hicks KB, Osman SF, Hotchkiss AT Jr, Haines RM (1995) Oxalic acid in commercial pectins inhibits browning of raw apple juice. J Agric Food Chem 43:592–597

    Article  CAS  Google Scholar 

  • Vámos-Vigyázó L, Haard NF (1981) Polyphenol oxidases and peroxidases in fruits and vegetables. Crit Rev Food Sci Nutr 15(1):49–127

    Article  PubMed  Google Scholar 

  • Whitaker JR (1995) Polyphenol oxidase. In: Food enzymes. Springer, New York, pp 271–307

    Chapter  Google Scholar 

  • Whitaker JR, Lee CY (1995) Recent advances in chemistry of enzymatic browning: an overview. In: Enzymatic browning and its prevention, ACS symposium series. American Chemical Society, Washington, DC, pp 2–7

    Chapter  Google Scholar 

  • Yadav DN (2008) Effect of microwave heating of wheat grains on the browning of dough and quality chapattis. Int J Food Sci 43:1217–1225

    Article  CAS  Google Scholar 

  • Zawistowski J, Biliaderis CG, Eskin NM (1991) Polyphenol oxidase. In: Robinson DSR, Eskin NAM (eds) Oxidative enzymes in foods. Elsevier, London, pp 217–273

    Google Scholar 

  • Zhou JQ, Zhao GY, Zhang PQ, Bai YH (2008) Colour stability of fresh peach prepared juice heating at high pressure during storage. Mod Food Sci Technol 24:548–551

    CAS  Google Scholar 

  • Zocca F (2010) Antibrowning potential of Brassicaceae. Bioresour Technol 101:3791–3795

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grants Commission, New Delhi, for providing financial assistance in the form of Major Research Project and Research Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Suri, K., Shevkani, K., Kaur, A., Kaur, A., Singh, N. (2018). Enzymatic Browning of Fruit and Vegetables: A Review. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_4

Download citation

Publish with us

Policies and ethics