Skip to main content
Log in

Assessment of milk fat based on signal-to-ground voltage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study proposes an electromagnetic method for assessing fat content by measuring the signal-to-ground voltage in milk. The milk-filled spiral glass tube, acting as the secondary coil of a transformer, under different magnetic fluxes at the same frequency. The measurement system included two connected sample coils in a close-loop configuration and an open-loop configuration. The voltage at the four terminals of two coils was detected. The results indicated that the voltage at these four terminals had differential response characteristics, but their sum was consistent regardless of the configuration. A linear correlation (R2 = 0.845 and R2 = 0.941) was observed between milk fat and signal-to-ground voltage. The root mean square error (RMSE) of calibration (RMSEC) was 0.368 and 0.230 g/100 g fat content, respectively, whereas the RMSE of cross validation (RMSECV) was 0.232 and 0.599 g/100 g (fat content) for the 700 Hz, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Zheng, X. Ying, W. Wang, Z. Chen, C. Shao, H. Zhou, S. Wang, X. Ping, J. Li, X. Yi, S. Deng, G. Hui, Int. J. Food Prop. 22, 942 (2019)

    Article  CAS  Google Scholar 

  2. N. Nimsuk, J. Food Meas. Charact. 13, 656 (2019)

    Article  Google Scholar 

  3. C. Shao, H. Zheng, Z. Zhou, J. Li, X. Lou, G. Hui, Z. Zhao, Food Anal Method. 11, 3121 (2018)

    Article  Google Scholar 

  4. M. Castrica, S. Panseri, E. Siletti, F. Borgonovo, L. Chiesa, C.M. Balzaretti, J. Chem. 2019, 2904724 (2019)

    Article  Google Scholar 

  5. X. Zhang, H. Zhou, L. Chang, X. Lou, J. Li, G. Hui, Z. Zhao, Int. J. Food Prop. 21, 1257 (2018)

    Article  CAS  Google Scholar 

  6. X. Ying, A. Zinnai, F. Venturi, C. Sanmartin, S. Deng, J. Food Meas. Charact. 11, 1026 (2017)

    Article  Google Scholar 

  7. S. Lihuan, W. Liu, Z. Xiaohong, H. Guohua, Z. Zhidong, J. Food Meas. Charact. 11, 1969 (2017)

    Article  Google Scholar 

  8. S. Colombié, E. Latrille, J.M. Sablayrolles, Eur. Food Res. Technol. 226, 1553 (2008)

    Article  Google Scholar 

  9. H.A. Duong, M.T. Vu, T.D. Nguyen, M.H. Nguyen, T.D. Mai, J. Food Compos. Anal. 87, 103422 (2020)

    Article  CAS  Google Scholar 

  10. M. Grossi, M. Lanzoni, R. Lazzarini, B. Riccò, Measurement 45(7), 1747 (2012)

    Article  Google Scholar 

  11. R. Żywica, J.K. Banach, J. Food Meas. Charact. 13, 1508 (2019)

    Article  Google Scholar 

  12. C. Das, S. Chakraborty, N.K. Bera, D. Chattopadhyay, A. Karmakar, S. Chattopadhyay, Measurement 148, 106937 (2019)

    Article  Google Scholar 

  13. H. Zhou, N. Yang, J. Food Meas. Charact. 13, 1547 (2019)

    Article  Google Scholar 

  14. K. Pentoś, D. Łuczycka, Eur. Food Res. Technol. 244, 873 (2018)

    Article  Google Scholar 

  15. L. Yao, Y. Luo, Y. Sun, H. Shen, J. Food Eng. 107, 147 (2011)

    Article  Google Scholar 

  16. M. Fikry, Y.A. Yusof, A.M. Al-Awaadh, R.A. Rahman, N.L. Chin, J. Food Meas. Charact. 14, 1158 (2020)

    Article  Google Scholar 

  17. P. Kuson, A. Terdwongworakul, J. Food Eng. 116, 50 (2013)

    Article  Google Scholar 

  18. R. Żywica, J.K. Banach, J. Food Eng. 158, 8 (2015)

    Article  Google Scholar 

  19. M. Gancarz, J. Wawrzyniak, M. Gawrysiak-Witulska, D. Wiącek, A. Nawrocka, M. Tadla, et al., Measurement 103, 227 (2017)

    Article  Google Scholar 

  20. R. Żywica, J.K. Banach, K. Kiełczewska, J. Food Eng. 111, 420 (2012)

    Article  Google Scholar 

  21. U. Pliquett, Food Eng. Rev. 2, 74 (2010)

    Article  CAS  Google Scholar 

  22. X. Zhu, W. Guo, Z. Liang, Food. Bioprocess Tech. 8, 1485 (2015)

    Article  CAS  Google Scholar 

  23. A.C. Nunes, X. Bohigas, J. Tejada, J. Food Eng. 76, 250 (2006)

    Article  Google Scholar 

  24. R.M. El-Abassy, P.J. Eravuchira, P. Donfack, B.V.D. Kammer, A. Materny, Vib. Spectrosc. 56, 3 (2011)

    Article  CAS  Google Scholar 

  25. M. Povolo, G. Contarini, Lipid Technol. 21, 88 (2010)

    Article  Google Scholar 

  26. G.A. Spanos, S.J. Schwartz, R.B. van Breemen, C.H. Huang, Lipids 30, 35 (1995)

    Article  Google Scholar 

  27. S.L. Wu, Y.M. Jin, N. Yang, X.M. Xu, Z.J. Xie, Food Chem. 270, 538 (2019)

    Article  CAS  Google Scholar 

  28. A. Bogomolov, S. Dietrich, B. Boldrini, R.W. Kessler, Food Chem. 134, 412 (2012)

    Article  CAS  Google Scholar 

  29. S. Xiong, B. Adhikari, X.D. Chen, L. Che, J. Dairy Sci. 99, 9652 (2016)

    Article  CAS  Google Scholar 

  30. M.F. Mabrook, M.C. Petty, Sensors Actuators B Chem 96, 215 (2003)

    Article  CAS  Google Scholar 

  31. L.G. Phillips, M.L. McGiff, D.M. Barbano, H.T. Lawless, J. Dairy Sci. 78, 1258 (1995)

    Article  CAS  Google Scholar 

  32. B.A. Osopale, G.A. Adewumi, R.C. Witthuhn, O.O. Kuloyo, F.A. Oguntoyinbo, Food Control 99, 146 (2019)

    Article  CAS  Google Scholar 

  33. W. Feng, T. Wang, T. Dong, P. Xu, T. Zhang, X. Luo, L. Wang, R. Wang, Z. Chen, J. Cereal Sci. 85, 35 (2019)

    Article  CAS  Google Scholar 

  34. L. Ragni, E. Iaccheri, C. Cevoli, A. Berardinelli, A. Bendini, T.G. Toschi, J. Food Eng. 116, 246 (2013)

    Article  CAS  Google Scholar 

  35. M. Sharifi, B. Young, Food Bioprod. Process. 90, 659 (2012)

    Article  CAS  Google Scholar 

  36. N.M. Lugonja, D.M. Stanković, B. Miličić, S.D. Spasić, V. Marinković, M.M. Vrvić, Food Chem. 240, 567 (2018)

    Article  CAS  Google Scholar 

  37. M.Y. Zhang, Y. Na, L.N. Guo, D.D. Li, S.L. Wu, F.F. Wu, Z.Y. Jin, X.M. Xu, J. Food Eng. 234, 108 (2018)

    Article  CAS  Google Scholar 

  38. S.L. Wu, N. Yang, Y.M. Jin, X.M. Xu, Z.Y. Jin, Z.J. Xie, Food Chem. 325, 126943 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (2017YFD0400404, 2016YFD0400701), National Natural Science Foundation of China (No. 31701522), Nature Science Foundation of Jiangsu Province (No. BK20170182, BK20180608), the Agricultural Science and Technology Independent Innovation Funds of Jiangsu Province (CX(19)3069, CX(19)3067), Postgraduate Research & Practice Innovation Program of Jiangnan University (No. JNKY19-002), China Postdoctoral Science Foundation (No. 2020M682725).

Author information

Authors and Affiliations

Authors

Contributions

Shilin Wu: Software,Validation, Writing- Original draft preparation; Huang Zhang: Data curation, Methodology, Resources; Yamei Jin: Visualization, Investigation; Na Yang: Supervision, Resources, Conceptualization, Writing- Reviewing and Editing; Xueming Xu: Software, Validation; Zhengjun Xie: Project administration.

Corresponding author

Correspondence to Na Yang.

Ethics declarations

Conflict of interest

No conflict of interest involving any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhang, H., Jin, Y. et al. Assessment of milk fat based on signal-to-ground voltage. Food Measure 15, 1385–1394 (2021). https://doi.org/10.1007/s11694-020-00733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00733-5

Keywords

Navigation