Skip to main content
Log in

Improvement of accuracy in beer classification using transient features for electronic nose technology

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this paper, an electronic nose technology was applied in beer classification. This paper proved the effectiveness of the use of odor for the classification of beers with different brands, which can imply a way for the characterization of beer using its aroma in the brewing industry. The method proposed in this paper was proved to be able to improve the classification accuracy very effectively. With transient features inclusive and dimensionality reduction by the principal component analysis, the accuracy of the classification was explicitly higher than a simple and traditional way of the use of only steady-state feature. As a result, the odor patterns of beer samples were clearly well-separated when including transient features. Furthermore, a simple-but-powerful learning vector quantization algorithm was used to derive the rate of classification accuracy. Consequently, it showed 100% of classification accuracy when including transient features, compared with 61% accuracy in the traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Persuad, G. Dodd, Nature 299, 352–355 (1982)

    Article  Google Scholar 

  2. J.W. Gardner, P.N. Barlett, Electronic Noses: Principles and Applications (Oxford University Press, New York, 1999)

    Google Scholar 

  3. A. Loutfi, S. Coradeschi, G.K. Mani, P. Shankar, J. Bosco, J. Food Eng. 144, 103–111 (2015)

    Article  CAS  Google Scholar 

  4. A. Perera, A. Pardo, D. Barrettino, A. Hierlermann, S. Marco, Sens. Actuators B 146(2), 477–482 (2010)

    Article  CAS  Google Scholar 

  5. M. Peris, L. Escuder-Gilabert, Anal. Chim. Acta 638, 1–15 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. A. Blanco-Rodríguez, V.F. Camara, F. Campo, L. Becherán, A. Durán, V.D. Vieira, H. Melo, A.R. Garcia-Ramirez, Water Res. 134, 92–100 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. L. Capelli, S. Sironi, R.D. Rosso, Sensors 14, 19979–20007 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. L. Dentoni, L. Capelli, S. Sironi, R.D. Rosso, P. Centola, F. Dematte, M.D. Torre, Sensors 12, 14363–14381 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. J.W. Gardner, T.A. Vincent, Sensors 16(7), 947 (2016)

    Article  CAS  Google Scholar 

  10. S. Esfahani, N.M. Sagar, I. Kyrou, E. Mozdiak, N. O’Connell, C. Nwokolo, K.D. Bardhan, R.P. Arasaradnam, J.A. Covington, Biosensors 6(1), 4 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  11. M. Cannistraro, E. Lorenzini, Int. J. Heat Technol. 34(4), 551–557 (2016)

    Article  Google Scholar 

  12. L.A. Horsfall, D.C. Pugh, C.S. Blackman, I.P. Parkin, J. Mater. Chem. A 5(5), 2172–2179 (2017)

    Article  CAS  Google Scholar 

  13. W.J. Peveler, R. Binions, S.M.V. Hailes, I.P. Parkin, J. Mater. Chem. A 1(7), 2613–2620 (2013)

    Article  CAS  Google Scholar 

  14. K. Brudzewski, S. Osowski, W. Pawlowski, Sens. Actuators B 161(1), 528–533 (2012)

    Article  CAS  Google Scholar 

  15. J. Li, H. Feng, W. Liu, Y. Gao, G. Hui, Food Anal. Method 9(10), 2943–2951 (2016)

    Article  Google Scholar 

  16. L. Zheng, J. Zhang, Y. Yu, G. Zhao, G. Hui, J. Food Meas. Charact. 10(2), 247–252 (2016)

    Article  Google Scholar 

  17. P. Mohapatra, S. Panigrahi, J. Amamcharla, J. Food Meas. Charact. 9(2), 121–129 (2015)

    Article  Google Scholar 

  18. Y. Yin, Y. Hao, Y. Bai, H. Yu, J. Food Meas. Charact. 11(1), 24–32 (2017)

    Article  Google Scholar 

  19. Q. Zhang, S. Zhang, C. Xie, D. Zeng, C. Fan, D. Li, Z. Bai, Sens. Actuators B 119, 538–546 (2006)

    Article  CAS  Google Scholar 

  20. J. Lozan, J.P. Santos, M.C. Horillo, Talanta 67, 610–616 (2005)

    Article  CAS  Google Scholar 

  21. S. Xu, X. Sun, E. Lü, H. Lu, J. Food Meas. Charact. 12, 867–876 (2018)

    Article  Google Scholar 

  22. H. Zhiyi, H. Chenchao, Z. Jiajia, L. Jian, H. Guohua, J. Food Meas. Charact. 11, 33–40 (2017)

    Article  Google Scholar 

  23. J. Jiang, J. Li, F. Zheng, H. Lin, G. Hui, J. Food Meas. Charact. 10(1), 48–55 (2016)

    Article  Google Scholar 

  24. G.A. Silva, F. Augusto, R.J. Poppi, Food Chem. 111(4), 1057–1063 (2008)

    Article  CAS  Google Scholar 

  25. G. Hughes, Home Brew Beer, (DK, London, 2013)

    Google Scholar 

  26. C.A. Iglasias, O. Montero, D. Sancho, C.A. Blanco, J. Sci. Food Agric. 95, 1571–1576 (2015)

    Article  CAS  Google Scholar 

  27. L. Vera, L. Acena, J. Guasch, R. Boque, M. Mestres, O. Busto, Talanta 87, 136–142 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. L. Vera, L. Acena, J. Guasch, R. Boque, M. Mestres, O. Busto, Anal. Bioanal. Chem. 399, 2073–2081 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. C.A. Blanco, D. Nimubona, E.F. Fernandez, I. Alvarez, J. Food Nutr. Res. 3(1), 1–8 (2015)

    Article  CAS  Google Scholar 

  30. T. Cajka, K. Riddellova, M. Tomaniova, J. Hajslova, J. Chromatogr. A 1217, 4195–4203 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. R.E. Shaffer, S.L. Rose-Pehrsson, R.A. McGill, Anal. Chim. Acta 384, 305–317 (1999)

    Article  CAS  Google Scholar 

  32. W. Chansongkram, N. Nimsuk, Procedia Comput. Sci. 86, 192–195 (2016)

    Article  Google Scholar 

  33. J. Yan, X. Guo, S. Duan, P. Jia, L. Wang, C. Peng, S. Zhang, Sensors 15, 27804–27831 (2015)

    Article  PubMed  Google Scholar 

  34. E. Llobet, J. Brezmes, X. Vilanova, J.E. Sueiras, X. Correig, Sens. Actuators B 41, 13–21 (1997)

    Article  CAS  Google Scholar 

  35. S. Roussel, G. Forsberg, V. Steinmetz, P. Grenier, B.V. Maurel, J. Food Eng. 37, 207–222 (1998)

    Article  Google Scholar 

  36. N. Nimsuk, T. Nakamoto, Sens. Actuators B 127, 491–496 (2007)

    Article  CAS  Google Scholar 

  37. T. Kohonen, Self-Organization and Associative Memory, (Springer, New York, 1989)

    Book  Google Scholar 

  38. M. Kuhn, K. Johnson, Applied Predictive Modeling, 1st edn. (Springer, New York, 2013), p. 70

    Book  Google Scholar 

Download references

Funding

This work was partially funded by Thailand Research Fund (TRF), grant no. MRG5380296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitikarn Nimsuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimsuk, N. Improvement of accuracy in beer classification using transient features for electronic nose technology. Food Measure 13, 656–662 (2019). https://doi.org/10.1007/s11694-018-9978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9978-y

Keywords

Navigation