Skip to main content

Advertisement

Log in

Effect of Rotational Speed on Mechanical, Microstructure, and Residual Stress Behaviour of AA6061-T6 Alloy Joints through Friction Stir Welding

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, the behaviour of an AA6061-T6 alloy joint through friction stir welding was studied comprehensively under a set of processing parameters so as to establish a better microstructure-strength relationship in the joint. In-depth investigations have been done on intermetallic compounds and their phases using SEM, XRD, optical microscopy, and EDS, and thereby on the mechanical properties of the welded joint through tensile, hardness, and residual stress. The results revealed the evolution of grain boundaries and the existence of second-phase particles such as Mg2Si, MgZn2, MgCu2, and Al2CuMg. Moreover, using a rotational speed of 800 rpm results in enhanced hardness, tensile strength, and flexural strength. The highest and lowest tensile strengths of 198 and 171 MPa correspond to 800 and 600 rpm, respectively. The grain size distribution in the weld zone is 76.94, 0.83 and 36.82 µm for 600, 800, and 1000 rpm, respectively. Flexural strength was improved for the 800-rpm case and reached a maximum of 380 MPa. The lowest residual stress was found for an 800-rpm sample with tensile and compressive nature of stresses. Ductile fracture behaviour was obtained for tensile samples obtained at 600 and 800 rpm, whereas in the case of 1000 rpm, brittle fracture behaviour was seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A.L. Etter, T. Baudin, N. Fredj, and R. Penelle, Recrystallization Mechanisms in 5251 H14 and 5251 O Aluminum Friction Stir Welds, Mater. Sci. Eng. A, 2007, 445, p 94–99.

    Article  Google Scholar 

  2. C. Du, X. Wang, Q. Pan, K. Xue, M. Ni, and J. Liu, Correlation Between Microstructure and Mechanical Properties of 6061–T6 Double-Side FSW Joint, J. Manuf. Process., 2019, 38, p 122–134.

    Article  Google Scholar 

  3. R.S. Mishra, and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50(1–2), p 1–78.

    Article  Google Scholar 

  4. T. Ding, H. Yan, J. Chen, W. Xia, B. Su,, and H. Zhu, Microstructure Evolution and Recrystallization Mechanisms of High Mg Alloyed Al-Mg Alloy during Friction Stir Welding with Different Cooling Media. J. Mater. Eng. Perform., 2022, p 1–12.

  5. J. Wang, B. Fu, L. Bergmann, F. Liu, and B. Klusemann, Effect of Welding Speed on Friction Stir Welds of PM2000 Alloy, J. Mater. Eng. Perform., 2023, 32(2), p 577–586.

    Article  CAS  Google Scholar 

  6. A.K. Kadian and P. Biswas, The Study of Material Flow Behaviour in Dissimilar Material FSW of AA6061 and Cu-B370 Alloys Plates, J. Manuf. Process., 2018, 34, p 96–105.

    Article  Google Scholar 

  7. S. Ravikumar, V.S. Rao, and R.V. Pranesh, Effect of Process Parameters on Mechanical Properties of Friction Stir Welded Dissimilar Materials Between AA6061-T651 and AA7075-T651 Alloys, Int. J. Adv. Mech. Eng., 2014, 4(1), p 101–114.

    Google Scholar 

  8. M.M. Moradi, H.J. Aval, and R. Jamaati, Effect of Pre and Post Welding Heat Treatment in SiC-Fortified Dissimilar AA6061-AA2024 FSW Butt Joint, J. Manuf. Process., 2017, 30, p 97–105.

    Article  Google Scholar 

  9. J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, and J. Wei, Friction Stir Welding of Dissimilar Materials Between AA6061 and AA7075 Al Alloys Effects of Process Parameters, Mater. Des., 2014, 1980–2015(56), p 185–192.

    Article  Google Scholar 

  10. Y. Ni, L. Fu, Z. Shen, and X.C. Liu, Role of Tool Design on Thermal Cycling and Mechanical Properties of a High-Speed Micro Friction Stir Welded 7075–T6 Aluminum Alloy, J. Manuf. Process., 2019, 48, p 145–153.

    Article  Google Scholar 

  11. P. Talebizadehsardari, F. Musharavati, A. Khan, T.A. Sebaey, A. Eyvaziana, and H.A. Derazkola, Underwater Friction Stir Welding of Al-Mg Alloy: Thermo-Mechanical Modeling and Validation, Mater. Today Commun., 2021, 26, p 101965.

    Article  CAS  Google Scholar 

  12. A. Tavassolimanesh and A.A. Nia, A New Approach for Manufacturing Copper-Clad Aluminum Bimetallic Tubes by Friction Stir Welding (FSW), J. Manuf. Process., 2017, 30, p 374–384.

    Article  Google Scholar 

  13. S.W. Williams and A. Steuwer, Residual stresses in friction stir welding. In Friction Stir Welding. Woodhead Publishing. 2010 p 215–244.

  14. M. Kotobi and M. Honarpisheh, Experimental and Numerical Investigation of Through-Thickness Residual Stress of Laser-Bent Ti Samples, J. Strain Anal. Eng. Des., 2017, 52(6), p 347–355.

    Article  Google Scholar 

  15. M. Honarpisheh, E. Haghighat, and M. Kotobi, Investigation of Residual Stress and Mechanical Properties of Equal Channel Angular Rolled St12 Strips, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., 2018, 232(10), p 841–851.

    CAS  Google Scholar 

  16. M. Honarpisheh and H. Khanlari, A Numerical Study on the Residual Stress Measurement Accuracy using Inverse Eigenstrain Method, J. Stress Anal., 2018, 2(2), p 1–10.

    Google Scholar 

  17. F. Nazari, M. Honarpisheh, and H. Zhao, Effect of Stress Relief Annealing on Microstructure, Mechanical Properties, and Residual Stress of a Copper Sheet in the Constrained Groove Pressing Process, Int. J. Adv. Manuf. Technol., 2019, 102, p 4361–4370.

    Article  Google Scholar 

  18. M. Sedighi and M. Honarpisheh, Experimental Study of Through-Depth Residual Stress in Explosive Welded Al–Cu–Al Multilayer, Mater. Des., 2012, 37, p 577–581.

    Article  CAS  Google Scholar 

  19. M. Sedighi and M. Honarpisheh, Investigation of Cold Rolling Influence on Near Surface Residual Stress Distribution in Explosive Welded Multilayer, Strength Mater., 2012, 44, p 693–698.

    Article  CAS  Google Scholar 

  20. M.S. Węglowski, P. Sedek, and C. Hamilton, Experimental Analysis of Residual Stress in Friction Stir Processed Cast AlSi9Mg Aluminium Alloy, Key Eng. Mater., 2016, 682, p 18–23.

    Article  Google Scholar 

  21. C. Hamilton, M.S. Węglowski, S. Dymek, and P. Sedek, Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si, J. Mater. Eng. Perform., 2015, 24, p 1305–1312.

    Article  CAS  Google Scholar 

  22. N. Zhu, D.Z. Avery, Y. Chen, K. An, J.B. Jordon, P.G. Allison, and L.N. Brewer, Residual Stress Distributions in AA6061 Material Produced by Additive Friction Stir Deposition. J. Mater. Eng. Perform. 2022, p 1–10.

  23. A. Tognan, L. Sandnes, G. Totis, M. Sortino, F. Berto, Ø. Grong, and E. Salvati, Evaluation and Origin of Residual Stress in Hybrid Metal and Extrusion Bonding and Comparison with Friction Stir Welding, Int. J. Mech. Sci., 2022, 218, p 107089.

    Article  Google Scholar 

  24. I. Alinaghian, S. Amini, and M. Honarpisheh, Residual Stress, Tensile Strength, and Macrostructure Investigations on Ultrasonic Assisted Friction Stir Welding of AA 6061–T6, J. Strain Anal. Eng. Des., 2018, 53(7), p 494–503.

    Article  Google Scholar 

  25. C. Dalle Donne, E. Lima, J. Wegener, A. Pyzalla, T. Buslaps, Investigations on Residual Stresses in Friction Stir Welds, in 3rd International Symposium on Friction Stir Welding 2001; Vol. 27.

  26. Y.E. Ma, P. Staron, T. Fischer, and P.E. Irving, Size Effects on Residual Stress and Fatigue Crack Growth in Friction Stir Welded 2195–T8 Aluminium–Part I: Experiments, Int. J. Fatigue, 2011, 33(11), p 1417–1425.

    Article  CAS  Google Scholar 

  27. K.K. Kumar, A. Kumar, and M.V.N.V. Satyanarayana, Effect of Friction stir Welding Parameters on the Material flow, Mechanical Properties and Corrosion Behavior of Dissimilar AA5083-AA6061 Joints, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2022, 236(6), p 2901–2917.

    Article  CAS  Google Scholar 

  28. J. Dong, D. Zhang, W. Zhang, G. Cao, and C. Qiu, Effect of Post-Weld Heat Treatments on the Microstructure and Mechanical Properties of Underwater Friction Stir Welded Joints of 7003–T4/6060-T4 Aluminium Alloys, Mater. Sci. Eng., A, 2023, 862, p 144423.

    Article  CAS  Google Scholar 

  29. K.K. Kumar, A. Kumar, and S. Sundar, Investigation of Microstructure Characteristics and Work Hardening Behaviour of Water-Cooled FSW Dissimilar Aluminium Alloys, Mater. Today Commun., 2023, 35, p 105857.

    Article  CAS  Google Scholar 

  30. K. Elangovan, V. Balasubramanian, and S. Babu, Predicting Tensile Strength of Friction Stir Welded AA6061 Aluminium Alloy Joints by a Mathematical Model, Mater. Des., 2009, 30(1), p 188–193.

    Article  CAS  Google Scholar 

  31. F.J. Humphreys, A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures—I. The Basic Model, Acta Mater., 1997, 45(10), p 4231–4240.

    Article  CAS  Google Scholar 

  32. F.J. Humphreys, A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures—II. The Effect of Second-Phase Particles, Acta Mater., 1997, 45(12), p 5031–5039.

    Article  CAS  Google Scholar 

  33. K.A. Hassan, A.F. Norman, D.A. Price, and P.B. Prangnell, Stability of Nugget Zone Grain Structures in High Strength Al-Alloy Friction Stir Welds during Solution Treatment, Acta Mater., 2003, 51(7), p 1923–1936.

    Article  CAS  Google Scholar 

  34. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, and C.W. Lee, Grain Structure Evolution during Friction-Stir Welding of AZ31 Magnesium Alloy, Acta Mater., 2009, 57(18), p 5406–5418.

    Article  CAS  Google Scholar 

  35. R. Dubey, R. Jayaganthan, D. Ruan, N.K. Gupta, N. Jones, and R. Velmurugan, (2022). Energy Absorption and Dynamic Behaviour of 6xxx Series Aluminium Alloys: A review. Int. J. Impact Eng., 2022, p 104397.

  36. V.P. Singh, S.K. Patel, A. Ranjan, and B. Kuriachen, Recent Research Progress in Solid State Friction-Stir Welding of Aluminium–Magnesium Alloys: A Critical Review, J. Market. Res., 2020, 9(3), p 6217–6256.

    CAS  Google Scholar 

  37. V.P. Singh, S.K. Patel, N. Kumar, and B. Kuriachen, Parametric Effect on Dissimilar Friction Stir Welded Steel-Magnesium Alloys Joints: A Review, Sci. Technol. Weld. Join.., 2019, 24, p 653–684.

    Article  CAS  Google Scholar 

  38. C.H.E.N. Yu, D.I.N.G. Hua, J.Z. Li, J.W. Zhao, M.J. Fu, and X.H. Li, Effect of Welding Heat Input and post-Welded Heat Treatment on Hardness of Stir Zone for Friction Stir-Welded 2024–T3 Aluminum Alloy, Trans. Nonferr. Metals Soc. China, 2015, 25(8), p 2524–2532.

    Article  Google Scholar 

  39. C. Leitao, R.M. Leal, D.M. Rodrigues, A. Loureiro, and P. Vilaça, Mechanical Behaviour of Similar and Dissimilar AA5182-H111 and AA6016-T4 Thin Friction Stir Welds, Mater. Des., 2009, 30(1), p 101–108.

    Article  CAS  Google Scholar 

  40. M. Paidar, A. Khodabandeh, H. Najafi, and A.S. Rouh-aghdam, Effects of the Tool Rotational Speed and Shoulder Penetration Depth on Mechanical Properties and Failure Modes of Friction Stir Spot Welds of Aluminum 2024–T3 Sheets, J. Mech. Sci. Technol., 2014, 28, p 4893–4898.

    Article  Google Scholar 

  41. V.P. Singh, S.K. Patel, and B. Kuriachen, Mechanical and Microstructural Properties Evolutions of Various Alloys Welded Through Cooling Assisted Friction-Stir Welding: A Review, Intermetallics, 2021, 133, p 107122.

    Article  CAS  Google Scholar 

  42. V.P. Singh and B. Kuriachen, Experimental Investigations Into the Mechanical and Metallurgical Characteristics of Friction Stir Welded AZ31 Magnesium Alloy. J. Mater. Eng. Perform. 2022, p 1–17.

  43. V.P. Singh, D. Kumar, R.P. Mahto, and B. Kuriachen, Microstructural and Mechanical Behavior of Friction-Stir-Welded AA6061-T6 and AZ31 Alloys with Improved Electrochemical Corrosion, J. Mater. Eng. Perform., 2023, 32(9), p 4185–4204.

    Article  CAS  Google Scholar 

  44. B. Kulkarni, S. Pankade, S. Tayde, and S. Bhosle, Corrosion and Mechanical Aspects of Friction Stir Welded AA6061 joints: Effects of Different Backing Plates, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-07900-x

    Article  Google Scholar 

  45. P. Prakash, R.S. Anand, and S.K. Jha, Experimental Analysis of Tensile Strength of Different Thicknesses and Dissimilar Aluminum Alloys in Friction Stir Welding, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07694-4

    Article  Google Scholar 

  46. W. Xu, J. Liu, G. Luan, and C. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219–T6 Aluminum Alloy, Mater. Des., 2009, 30(9), p 3460–3467.

    Article  CAS  Google Scholar 

  47. K. Dehghani, R. Ghorbani, and A.R. Soltanipoor, Microstructural Evolution and Mechanical Properties during the Friction Stir Welding of 7075-O Aluminum Alloy, Int. J. Adv. Manufact. Technol., 2015, 77, p 1671–1679.

    Article  Google Scholar 

  48. L.I. Tian, D.W. Zhou, Y.A.N. You-rui-ling, P.E.N.G. Ping, and J.S. Liu, First-principles and Experimental Investigations on Ductility/Brittleness of Intermetallic Compounds and Joint Properties in Steel/Aluminum Laser Welding, Trans. Nonferr. Metals Soc. China, 2021, 31(10), p 2962–2977.

    Article  Google Scholar 

  49. V. Msomi and N. Mbana, Mechanical Properties of Friction Stir Welded AA1050-H14 and AA5083-H111 Joint: Sampling Aspect, Metals, 2020, 10(2), p 214.

    Article  CAS  Google Scholar 

  50. H.I. Dawood, K.S. Mohammed, A. Rahmat, and M.B. Uday, The Influence of the Surface Roughness on the Microstructures and Mechanical Properties of 6061 Aluminium Alloy using Friction Stir Welding, Surf. Coat. Technol., 2015, 270, p 272–283.

    Article  CAS  Google Scholar 

  51. A. Scialpi, M. De Giorgi, L.A.C. De Filippis, R. Nobile, and F.W. Panella, Mechanical Analysis of Ultra-Thin Friction Stir Welding Joined Sheets with Dissimilar and Similar Materials, Mater. Des., 2008, 29(5), p 928–936.

    Article  CAS  Google Scholar 

  52. P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, and P.M.S.T. De Castro, Mechanical and Metallurgical Characterization of Friction Stir Welding Joints of AA6061-T6 with AA6082-T6, Mater. Des., 2009, 30(1), p 180–187.

    Article  CAS  Google Scholar 

  53. T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, and K. Higashi, Influence of Friction Stir Welding Parameters on Grain Size and Formability in 5083 Aluminum Alloy, Mater. Sci. Eng., A, 2007, 456(1–2), p 344–349.

    Article  Google Scholar 

  54. G.R. Babu, K.G.K. Murti, and G.R. Janardhana, An Experimental Study on the Effect of Welding Parameters on Mechanical and Microstructural Properties of AA 6082–T6 Friction Stir Welded Butt Joints, ARPN J. Eng. Appl. Sci., 2008, 3(5), p 68–73.

    Google Scholar 

  55. G. Madhusudhan Reddy, P. Mastanaiah, K. Sata Prasad, and T. Mohandas, Microstructure and Mechanical Property Correlations in AA 6061 Aluminium Alloy Friction Stir Welds, Trans. Indian Inst. Met., 2009, 62, p 49–58.

    Article  Google Scholar 

Download references

Funding

There is no funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Pratap Singh.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical issue of the Journal of Materials Engineering and Performance on Residual Stress Analysis: Measurement, Effects, and Control. The issue was organised by Rajan Bhambroo, Tenneco, Inc.; Lesley Frame, University of Connecticut; Andrew Payzant, Oak Ridge National Laboratory; and James Pineault, Proto Manufacturing on behalf of the ASM Residual Stress Technical Committee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.P., Kumar, A., Kumar, R. et al. Effect of Rotational Speed on Mechanical, Microstructure, and Residual Stress Behaviour of AA6061-T6 Alloy Joints through Friction Stir Welding. J. of Materi Eng and Perform 33, 3706–3721 (2024). https://doi.org/10.1007/s11665-023-08527-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08527-8

Keywords

Navigation