Skip to main content
Log in

Microstructural and Mechanical Behavior of Friction-Stir-Welded AA6061-T6 and AZ31 Alloys with Improved Electrochemical Corrosion

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of tool travel speed on the mechanical, microstructure and corrosion behavior of friction-stir-welded dissimilar AA6061-T6/AZ31 alloys has been characterized. Two different electrochemical techniques were studied in detail, i.e., potentiodynamic polarization test and electrochemical impedance spectroscopy at various pH values (i.e., pH = 2, pH = 7 and pH = 12) for all set of welded samples. Microstructural investigations were performed with the help of optical, SEM and EBSD microscopy techniques. The maximum corrosion rate (Cr) (29 mm/yr) at pH = 2 was obtained for sample A1 and minimum Cr (26 mm/yr) corresponding to sample A3, whereas, at pH = 12, maximum Cr (21 mm/yr) was obtained for sample A2 and minimum (19 mm/yr) was corresponding to sample A3. The cryo-Charpy impact test demonstrates the drop in values in all the cases with respect to room temperatures (25 °C), i.e., 16, 24 and 47% for sample A1, 19, 24 and 57% for sample A2, and 12, 33 and 36% for sample A3 at 0, − 20 and − 40 °C, respectively. The intermetallic compounds (IMCs) like Al12Mg17 and Al3Mg2 (before corrosion) and Mg(OH)2 and Al(OH)3 (after corrosion) were formed in the stir zone (SZ). The joint efficiency was 65, 84 and 91%, at different levels of welding speed, i.e., 16, 20 and 25 mm/min, respectively. The fracture analysis of tensile and cryo-Charpy impact toughness test was shown in both ductile and brittle fracture behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. P. Peng, K. Wang, W. Wang, T. Yang, Q. Liu, T. Zhang, and S. Zhang et al., Intermetallic Compounds: Formation Mechanism and Effects on the Mechanical Properties of Friction Stir Lap Welded Dissimilar Joints of Magnesium and Aluminum Alloys, Mater. Sci. Eng. A, 2021, 802, p 140554.

    Article  CAS  Google Scholar 

  2. A. Kostka, R.S. Coelho, J. Dos Santos, and A.R. Pyzalla, Microstructure of Friction Stir Welding of Aluminium Alloy to Magnesium Alloy, Scripta Mater., 2009, 60(11), p 953–956.

    Article  CAS  Google Scholar 

  3. Y.S. Sato, S.H. Park, M. Michiuchi, and H. Kokawa, Constitutional Liquation During Dissimilar Friction Stir Welding of Al and Mg Alloys, Scripta Mater., 2004, 50(9), p 1233–1236.

    Article  CAS  Google Scholar 

  4. S. Kumar, C.S. Wu, S. Zhen, and W. Ding, Effect of Ultrasonic Vibration on Welding Load, Macrostructure, and Mechanical Properties of Al/Mg Alloy Joints Fabricated by Friction Stir Lap Welding, Int. J. Adv. Manuf. Technol., 2019, 100(5), p 1787–1799.

    Article  Google Scholar 

  5. Y. Xu, L. Ke, Y. Mao, Q. Liu, J. Xie, and H. Zeng, Formation Investigation of Intermetallic Compounds of Thick Plate Al/Mg Alloys Joint by Friction Stir Welding, Materials, 2019, 12(17), p 2661.

    Article  CAS  Google Scholar 

  6. Z. Liang, G. Qin, H. Ma, F. Yang, and Z. Ao, The Constitutional Liquation at the Interface of Al/Mg Friction Welding Joints, Sci. Technol. Weld. Joining, 2017, 22(5), p 363–372.

    Article  CAS  Google Scholar 

  7. M. Azizieh, A.S. Alavijeh, M. Abbasi, Z. Balak, and H.S. Kim, Mechanical Properties and Microstructural Evaluation of AA1100 to AZ31 Dissimilar Friction Stir Welds, Mater. Chem. Phys., 2016, 170, p 251–260.

    Article  CAS  Google Scholar 

  8. R. Beygi, H. Pouraliakbar, K. Torabi, V. Fallah, S.K. Kim, R. Shi, and L.F.M. da Silva, The Inhibitory Effect of Stir Zone Liquefaction and Eutectic-Phase Formation on the Growth of γ/β Intermetallics During Dissimilar FSW of Al/Mg Alloys, J. Manuf. Process., 2021, 70, p 152–162.

    Article  Google Scholar 

  9. T. Morishige, A. Kawaguchi, M. Tsujikawa, M. Hino, T. Hirata, and K. Higashi, Dissimilar Welding of Al and Mg Alloys by FSW, Mater. Trans., 2008 https://doi.org/10.2320/matertrans.MC200768

    Article  Google Scholar 

  10. X. Liu, Z. Li, Xu. Zhiwu, S. Chen, L. Peng, and J. Yan, Joint formation and mechanical properties of ultrasonic-assisted transient liquid bonding of dissimilar Al/Mg with a Zn interlayer in air, J. Manuf. Process., 2022, 77, p 632–641.

    Article  Google Scholar 

  11. Y. Li, Z. Wei, Z. Wang, and Y. Li, Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to magnesium Alloy AZ31B, J. Manuf. Sci. Eng., 2013, 135(6), p 0610071–0610077.

    Article  Google Scholar 

  12. Y. Ma, Y. Li, W. Hu, M. Lou, and Z. Lin, Modeling of Friction Self-Piercing Riveting of Aluminum to Magnesium, J. Manuf. Sci. Eng., 2016, 138(6), p 0610071–0610079.

    Article  Google Scholar 

  13. A. Masoudian, A. Tahaei, A. Shakiba, F. Sharifianjazi, and J.A. Mohandesi, Microstructure and Mechanical Properties of Friction Stir Weld of Dissimilar AZ31-O Magnesium Alloy to 6061–T6 Aluminum Alloy, Trans. Nonferrous Metals Soc. China, 2014, 24(5), p 1317–1322.

    Article  CAS  Google Scholar 

  14. C. Liu, D.L. Chen, S. Bhole, X. Cao, and M. Jahazi, Polishing-Assisted Galvanic Corrosion in the Dissimilar Friction Stir Welded Joint of AZ31 Magnesium Alloy to 2024 Aluminum Alloy, Mater. Charact., 2009, 60(5), p 370–376.

    Article  CAS  Google Scholar 

  15. E.T. Akinlabi, A. Andrews, and S.A. Akinlabi, Effects of Processing Parameters on Corrosion Properties of Dissimilar Friction Stir Welds of Aluminium and Copper, Trans. Nonferrous Metals Soc. China, 2014, 24(5), p 1323–1330.

    Article  CAS  Google Scholar 

  16. U. Donatus, G.E. Thompson, X. Zhou, J. Wang, A. Cassell, and K. Beamish, Corrosion Susceptibility of Dissimilar Friction Stir Welds of AA5083 and AA6082 Alloys, Mater. Charact., 2015, 107, p 85–97.

    Article  CAS  Google Scholar 

  17. Li. Yang, X. Shi, X. Tian, Y. Xue, J. Wang, and L. Qi, Influence of pH Value on the Microstructure and Corrosion Behavior of Carbon Fiber Reinforced Magnesium Matrix Composites, J. Market. Res., 2022, 17, p 412–424.

    CAS  Google Scholar 

  18. A. Dhanapal, S.R. Boopathy, and V. Balasubramanian, Influence of pH value, Chloride Ion Concentration and Immersion Time on Corrosion Rate of Friction Stir Welded AZ61A Magnesium Alloy Weldments, J. Alloys Compd., 2012, 523, p 49–60.

    Article  CAS  Google Scholar 

  19. O.R. Brown and J.S. Whitley, Electrochemical Behaviour of Aluminium in Aqueous Caustic Solutions, Electrochim. Acta, 1987, 32(4), p 545–556.

    Article  CAS  Google Scholar 

  20. D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, Comparison of the Corrosion Behaviour of AZ31B Magnesium Alloy Under Immersion Test and Potentiodynamic Polarization Test in NaCl Solution, J. Magn. Alloys, 2014, 2(1), p 36–49.

    Article  CAS  Google Scholar 

  21. A.J. Bard, Encyclopedia of Electrochemistry of the Elements, Vol VIII Marcel Dekker, New York, 1978.

    Google Scholar 

  22. W.A. Badawy, N.H. Helal, M.M. El-Rabiee, and H. Nady, Electrochemical Behavior of Mg and Some Mg Alloys in Aqueous Solutions of Different pH, Electrochem. Acta, 2010, 55, p 1880.

    Article  CAS  Google Scholar 

  23. W.A. Badawy, F.M. Al-Kharafi, and A.S. El-Azab, Electrochemical Behaviour and Corrosion Inhibition of Al, Al-6061 and Al–Cu in Neutral Aqueous Solutions, Corros. Sci., 1999, 41, p 709.

    Article  CAS  Google Scholar 

  24. W.A. Badawy, F.M. Al-Kharafi, and J.R. Al-Ajmi, Electrochemical Behaviour of Cobalt in Aqueous Solutions of Different pH, J. Appl. Electrochem., 2000, 30, p 693.

    Article  CAS  Google Scholar 

  25. H. Shi, Ke. Chen, Z. Liang, F. Dong, Yu. Taiwu, X. Dong, L. Zhang, and A. Shan, Intermetallic Compounds in the Banded Structure and their Effect on Mechanical Properties of Al/Mg Dissimilar Friction Stir Welding Joints, J. Mater. Sci. Technol., 2017, 33(4), p 359–366.

    Article  CAS  Google Scholar 

  26. K.M. Ismail and W.A. Badawy, Electrochemical and XPS Investigations of Cobalt in KOH Solutions, J. Appl. Electrochem., 2000, 30(11), p 1303–1311.

    Article  CAS  Google Scholar 

  27. T. Muramaki, H.R. Khan, and C.J. Raub, Anodic Oxidation of Aluminium in Sulphuric Acid Under Potentiostatic Conditions, Electrodepos. Surf. Treat., 1973, 1(5), p 405–418.

    Article  CAS  Google Scholar 

  28. D. Dubey, K. Kadali, S.S. Panda, A. Kumar, J. Jain, K. Mondal, and S.S. Singh, Comparative Study on the Stress Corrosion Cracking Susceptibility of AZ80 and AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2020, 792, p 139793.

    Article  CAS  Google Scholar 

  29. J.A. Moreto, C.E. Marino, W.W. Bose Filho, L.A. Rocha, and J.C. Fernandes, SVET, SKP and EIS Study of the Corrosion Behaviour of High Strength Al and Al–Li Alloys Used in Aircraft Fabrication, Corros. Sci., 2014, 84, p 30–41.

    Article  CAS  Google Scholar 

  30. Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Role of Second Phases in the Corrosion Behavior of Mg–5Zn Alloy, Corros. Sci., 2012, 60, p 238–245.

    Article  CAS  Google Scholar 

  31. Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, and K. Chou, Thermodynamics and Kinetics of Phase Transformation in Rare Earth–Magnesium Alloys: A Critical Review, J. Mater. Sci. Technol., 2020, 44, p 171–190.

    Article  CAS  Google Scholar 

  32. X. Zhang, Y. Lv, T. Hashimoto, J.-O. Nilsson, and X. Zhou, Intergranular Corrosion of AA6082 Al–Mg–Si Alloy Extrusion: The Influence of Trace Cu and Grain Boundary Misorientation, J. Alloy. Compd., 2021, 853, 157228.

    Article  CAS  Google Scholar 

  33. F. Yan, B. Chen, J. Yao, D. Zhang, M.F. Yan, and Y. Zhang, Characterization of Microstructure and Corrosion Properties of AZ91D Magnesium Alloy Surface-Treated by Coating-Nitriding, J. Mater. Res. Technol., 2021, 14, p 1559–1568.

    Article  CAS  Google Scholar 

  34. K. Sun, H. Gao, Hu. Jiaqi, and Y. Yan, Effect of pH on the Corrosion and Crack Growth Behavior of the ZK60 Magnesium Alloy, Corros. Sci., 2021, 179, 109135.

    Article  CAS  Google Scholar 

  35. J. Mohammadi, Y. Behnamian, A. Mostafaei, H. Izadi, T. Saeid, A.H. Kokabi, and A.P. Gerlich, Friction Stir Welding Joint of Dissimilar Materials Between AZ31B Magnesium and 6061 Aluminum Alloys: Microstructure Studies and Mechanical Characterizations, Mater. Charact., 2015, 101, p 189–207.

    Article  CAS  Google Scholar 

  36. P. Venkateswaran and A.P. Reynolds, Factors Affecting the Properties of Friction Stir Welds Between Aluminum and Magnesium Alloys, Mater. Sci. Eng. A, 2012, 545, p 26–37.

    Article  CAS  Google Scholar 

  37. Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, and Z.Y. Ma, Evolution of Local Texture and its Effect on Mechanical Properties and Fracture Behavior of Friction Stir Welded Joint of Extruded Mg-3Al-1Zn Alloy, Mater. Charact., 2017, 128, p 14–22.

    Article  CAS  Google Scholar 

  38. J. Zhang, X. Chen, D. Xia, G. Huang, A. Tang, B. Jiang, and F. Pan, Improving Performance of Friction Stir Welded AZ31/AM60 Dissimilar Joint by Adjusting Texture Distribution and Microstructure, Mater. Sci. Eng. A, 2020, 778, 139088.

    Article  CAS  Google Scholar 

  39. L. Zhang, H. Zhong, S. Li, H. Zhao, J. Chen, and L. Qi, Microstructure, Mechanical Properties and Fatigue Crack Growth Behavior of Friction Stir Welded Joint of 6061–T6 Aluminum Alloy, Int. J. Fatigue, 2020, 135, 105556.

    Article  CAS  Google Scholar 

  40. M.V. Satyanarayana, S. Bathula, and A. Kumar, Effect of External Cooling on Fatigue Crack Growth Behaviour of Friction Stir Processed AA6061 Alloy, Eng. Fracture Mech., 2022 https://doi.org/10.1016/j.engfracmech.2022.108236

    Article  Google Scholar 

  41. V.P. Singh, S.K. Patel, A. Ranjan, and B. Kuriachen, Recent Research Progress in Solid State Friction-Stir Welding of Aluminium–Magnesium Alloys: A Critical Review, J. Mater. Res. Technol., 2020, 9(3), p 6217–6256.

    Article  CAS  Google Scholar 

  42. C. Yan, R.X. Bai, Y. Gu, and W.J. Ma, Investigation on Mechanical Behaviour of AM60 Magnesium Alloys, J. Achiev. Mater. Manuf. Eng., 2008, 31(2), p 398–401.

    Google Scholar 

  43. F.J. Liu, L. Fu, and H.Y. Chen, Microstructure Evolution and Fracture Behaviour of Friction Stir Welded 6061–T6 Thin Plate Joints Under High Rotational Speed, Sci. Technol. Weld. Joining, 2018, 23(4), p 333–343.

    Article  CAS  Google Scholar 

  44. A. Dorbane, B. Mansoor, G. Ayoub, V.C. Shunmugasamy, and A. Imad, Mechanical, Microstructural and Fracture Properties of Dissimilar Welds Produced by Friction Stir Welding of AZ31B and Al6061, Mater. Sci. Eng. A, 2016, 651, p 720–733.

    Article  CAS  Google Scholar 

  45. Y. Song, Yi. Ma, H. Chen, Hu. Zhibo He, T.Z. Chen, and Z. Gao, The Effects of Tensile and Compressive Dwells on Creep-Fatigue Behavior and Fracture Mechanism in Welded Joint of P92 Steel, Mater. Sci. Eng., A, 2021, 813, 141129.

    Article  CAS  Google Scholar 

  46. T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, and K. Higashi, Influence of Friction Stir Welding Parameters on Grain Size and Formability in 5083 Aluminum Alloy, Mater. Sci. Eng. A, 2007, 456(12), p 344–349.

    Article  Google Scholar 

  47. G.R. Babu, K.G. Murti, and G.R. Janardhana, An Experimental Study on the Effect of Welding Parameters on Mechanical and Microstructural Properties of AA6082-T6 Friction Stir Welded Butt Joints.", ARPN J. Eng. Appl. Sci., 2008, 3(5), p 68–73.

    Google Scholar 

  48. D. Myung, W. Noh, J.-H. Kim, J. Kong, S.-T. Hong, and M.-G. Lee, Probing the Mechanism of Friction Stir Welding with ALE Based Finite Element Simulations and its application to Strength Prediction of WELDED Aluminum, Met. Mater. Int., 2021, 27(4), p 650–666.

    Article  CAS  Google Scholar 

  49. W. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18(4–6), p 269–273.

    Article  CAS  Google Scholar 

  50. K.K. Ramachandran, N. Murugan, and K.S. Shashi, Effect of Tool Axis Offset and Geometry of Tool Pin Profile on the Characteristics of Friction Stir Welded Dissimilar Joints of Aluminum Alloy AA5052 and HSLA Steel, Mater. Sci. Eng. A, 2015, 639, p 219–233.

    Article  CAS  Google Scholar 

  51. F. Yousefpour, R. Jamaati, and H.J. Aval, Effect of Traverse and Rotational Speeds on Microstructure, Texture, and Mechanical Properties of Friction Stir Processed AZ91 Alloy, Mater. Charact., 2021, 178, 111235.

    Article  CAS  Google Scholar 

  52. F. Tucci, P. Carlone, A.T. Silvestri, H. Parmar, and A. Astarita, Dissimilar Friction Stir Lap Welding of AA2198-AA6082: Process Analysis and Joint Characterization, CIRP J. Manuf. Sci. Technol., 2021, 35, p 753–764.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the FSW and CRF Lab, IIT Kharagpur, India, for providing the facilities for preparation of this work. Also special thanks should be given to Prof. S.K Pal and Dr. Raju Prasad Mahto for their intellectual and practical support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Kuriachen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.P., Kumar, D., Mahto, R.P. et al. Microstructural and Mechanical Behavior of Friction-Stir-Welded AA6061-T6 and AZ31 Alloys with Improved Electrochemical Corrosion. J. of Materi Eng and Perform 32, 4185–4204 (2023). https://doi.org/10.1007/s11665-022-07380-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07380-5

Keywords

Navigation