Skip to main content
Log in

Review on Shear Strength and Reliability of Nanoparticle Sintered Joints for Power Electronics Packaging

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The rapid development of the third-generation semiconductors has posed new requirements and challenges for power electronic packaging. In recent years, the utilization of nano-Ag and Cu sintering has emerged as a promising solution for third-generation semiconductor packaging. Sintered Ag demonstrates remarkable thermal conductivity and exceptional oxidation resistance, while sintered Cu offers economic benefits and superior electromigration resistance compared to sintered Ag. This work reviews the bonding process of Ag and Cu nanoparticles for power electronics packaging, and the shear strength and reliability of sintered joints. The influence of material properties, encompassing particle size, shape, and composition, along with critical sintering parameters such as temperature, pressure, and duration is discussed. Additionally, the pivotal role played by the metallization layer for the sintered bonding process is evaluated. Various reliability test results are summarized and analyzed focusing on their affecting factors. Furthermore, this review explores the broader landscape by delving into the opportunities and challenges posed by sintered Ag and Cu in the realm of power electronic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. S. Singh, T. Chaudhary, and G. Khanna, Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices. SILICON 14, 5793 (2022). https://doi.org/10.1007/s12633-021-01362-3.

    Article  CAS  Google Scholar 

  2. B. Nel and S. Perinpanayagam, A brief overview of SiC MOSFET failure modes and design reliability. Procedia CIRP 59, 280 (2017). https://doi.org/10.1016/j.procir.2016.09.025.

    Article  Google Scholar 

  3. Q. Zhang, A. Zehri, J. Liu, W. Ke, S. Huang, M.G. Latorre, N. Wang, X. Lu, C. Zhou, W. Xia, Y. Wu, and L. Ye, Mechanical property and reliability of bimodal nano-silver paste with Ag-coated SiC particles. Solder. Surf. Mt. Technol. 31, 193 (2019). https://doi.org/10.1108/SSMT-05-2018-0014.

    Article  Google Scholar 

  4. H.S. Chin, K.Y. Cheong, and A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 41, 824 (2010). https://doi.org/10.1007/s11663-010-9365-5.

    Article  CAS  Google Scholar 

  5. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, and M. Christopher, The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004). https://doi.org/10.1109/TEPM.2004.843109.

    Article  Google Scholar 

  6. B.S. Lee, Y.H. Ko, J.H. Bang, C.W. Lee, S. Yoo, J.K. Kim, and J.W. Yoon, Interfacial reactions and mechanical strength of Sn-3.0Ag-0.5Cu/Ni/Cu and Au-20Sn/Ni/Cu solder joints for power electronics applications. Microelectron. Reliab. 71, 119 (2017). https://doi.org/10.1016/j.microrel.2017.03.011.

    Article  CAS  Google Scholar 

  7. M. Abtew and G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R 27, 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3.

    Article  Google Scholar 

  8. J. Tsai, C. Chang, Y. Shieh, Y. Hu, and C. Kao, Controlling the microstructure from the gold-tin reaction. J. Electron. Mater. 34, 182 (2005). https://doi.org/10.1007/s11664-005-0231-1.

    Article  CAS  Google Scholar 

  9. S. Kim, K.S. Kim, S.S. Kim, and K. Suganuma, Interfacial reaction and die attach properties of Zn-Sn High-temperature solders. J. Electron. Mater. 38, 266 (2009). https://doi.org/10.1007/s11664-008-0550-0.

    Article  CAS  Google Scholar 

  10. Q. Yang and J. Shang, Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect. J. Electron. Mater. 34, 1363 (2005). https://doi.org/10.1007/s11664-005-0191-5.

    Article  CAS  Google Scholar 

  11. Y. Zhou, W. Gale, and T. North, Modelling of transient liquid phase bonding. Int. Mater. Rev. 40, 181 (1995). https://doi.org/10.1179/imr.1995.40.5.181.

    Article  CAS  Google Scholar 

  12. W. Gale and D. Butts, Transient liquid phase bonding. Sci. Technol. Weld. Join. 9, 283 (2004). https://doi.org/10.1179/136217104225021724.

    Article  CAS  Google Scholar 

  13. H.A. Mustain, W.D. Brown, and S.S. Ang, Transient liquid phase die attach for high-temperature silicon carbide power devices. IEEE Trans. Compon. Packag. Technol. 33, 563 (2010). https://doi.org/10.1109/TCAPT.2010.2046901.

    Article  CAS  Google Scholar 

  14. B.S. Lee, S.K. Hyun, and J.W. Yoon, Cu-Sn and Ni-Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. Mater. Electron. 28, 7827 (2017). https://doi.org/10.1007/s10854-017-6479-4.

    Article  CAS  Google Scholar 

  15. H. Shao, A. Wu, Y. Bao, Y. Zhao, and G. Zou, Interfacial reaction and mechanical properties for Cu/Sn/Ag system low temperature transient liquid phase bonding. J. Mater. Sci. Mater. Electron. 27, 4839 (2016). https://doi.org/10.1007/s10854-016-4366-z.

    Article  CAS  Google Scholar 

  16. W. Zhang and W. Ruythooren, Study of the Au/In reaction for transient liquid-phase bonding and 3D chip stacking. J. Electron. Mater. 37, 1095 (2008). https://doi.org/10.1007/s11664-008-0487-3.

    Article  CAS  Google Scholar 

  17. J.B. Lee, H.Y. Hwang, and M.W. Rhee, Reliability investigation of Cu/In TLP bonding. J. Electron. Mater. 44, 435 (2015). https://doi.org/10.1007/s11664-014-3373-1.

    Article  CAS  Google Scholar 

  18. M. Brincker, S. Söhl, R. Eisele, and V.N. Popok, Strength and reliability of low temperature transient liquid phase bonded CuSnCu interconnects. Microelectron. Reliab. 76, 378 (2017). https://doi.org/10.1016/j.microrel.2017.06.041.

    Article  CAS  Google Scholar 

  19. A.A. Bajwa and J. Wilde, Reliability modeling of Sn-Ag transient liquid phase die-bonds for high-power SiC devices. Microelectron. Reliab. 60, 116 (2016). https://doi.org/10.1016/j.microrel.2016.02.016.

    Article  CAS  Google Scholar 

  20. M. Hou and T.W. Eagar, Low temperature transient liquid phase (LTTLP) bonding for Au/Cu and Cu/Cu interconnections. J. Electron. Packag. 114, 443 (1992). https://doi.org/10.1115/1.2905478.

    Article  Google Scholar 

  21. H. Shao, A. Wu, Y. Bao, Y. Zhao, L. Liu, and G. Zou, Rapid Ag/Sn/Ag transient liquid phase bonding for high-temperature power devices packaging by the assistance of ultrasound. Ultrason. Sonochem. 37, 561 (2017). https://doi.org/10.1016/j.ultsonch.2017.02.016.

    Article  CAS  PubMed  Google Scholar 

  22. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385 (2005). https://doi.org/10.1016/j.actamat.2005.01.047.

    Article  CAS  Google Scholar 

  23. S.A. Paknejad and S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1 (2017). https://doi.org/10.1016/j.microrel.2017.01.010.

    Article  CAS  Google Scholar 

  24. J. Yan, A review of sintering-bonding technology using Ag nanoparticles for electronic packaging. Nanomaterials 11, 927 (2021). https://doi.org/10.3390/nano11040927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Z. Fang and H. Wang, Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53, 326 (2008). https://doi.org/10.1179/174328008X353538.

    Article  CAS  Google Scholar 

  26. K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947 (2014). https://doi.org/10.1007/s11664-013-2967-3.

    Article  CAS  Google Scholar 

  27. Y. Liu and K.N. Tu, Low melting point solders based on Sn, Bi, and In elements. Mater. Today Adv. 8, 100115 (2020). https://doi.org/10.1016/j.mtadv.2020.100115.

    Article  Google Scholar 

  28. H. Nishikawa, J.Y. Piao, and T. Takemoto, Interfacial reaction between Sn-0.7Cu (-Ni) solder and Cu substrate. J. Electron. Mater. 35, 1127 (2006). https://doi.org/10.1007/BF02692576.

    Article  CAS  Google Scholar 

  29. A. Fahim, S. Ahmed, M.R. Chowdhury, J.C. Suhling, and P. Lall, High temperature creep response of lead free solders, in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA (2016), pp. 1218–1224.

  30. A. Olofinjana, R. Haque, M. Mathir, and N.Y. Voo, Studies of the solidification characteristics in Sn-Ag-Cu-Bi solder alloys. Procedia Manuf. 30, 596 (2019). https://doi.org/10.1016/j.promfg.2019.02.084.

    Article  Google Scholar 

  31. D. Feil, T. Herberholz, M. Guyenot, and M. Nowottnick, Highly variable Sn-Cu diffusion soldering process for high performance power electronics. Microelectron. Reliab. 76–77, 455 (2017). https://doi.org/10.1016/j.microrel.2017.07.058.

    Article  CAS  Google Scholar 

  32. S.A. Musa, M.A.A. Mohd Salleh, and N. Saud, Zn-Sn based high temperature solder—a short review. Adv. Mater. Res. 795, 518 (2013).

    Article  Google Scholar 

  33. V. Chidambaram, H.B. Yeung, and G. Shan, Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics. J. Electron. Mater. 41, 2107 (2012). https://doi.org/10.1007/s11664-012-2114-6.

    Article  CAS  Google Scholar 

  34. H. Kang, A. Sharma, and J.P. Jung, Recent progress in transient liquid phase and wire bonding technologies for power electronics. Metals 10, 934 (2020). https://doi.org/10.3390/met10070934.

    Article  CAS  Google Scholar 

  35. H.Y. Zhao, J.H. Liu, Z.L. Li, X.G. Song, Y.X. Zhao, H.W. Niu, H.J. Dong, and J.C. Feng, A Comparative study on the microstructure and mechanical properties of Cu6Sn5 and Cu3Sn joints formed by TLP soldering with/without the assistance of ultrasonic waves. Metall. Mater. Trans. A 49, 2739 (2018). https://doi.org/10.1007/s11661-018-4664-6.

    Article  CAS  Google Scholar 

  36. P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, and Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces 7, 12597 (2015). https://doi.org/10.1021/acsami.5b02134.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, and K. Suganuma, Die bonding performance using bimodal Cu particle paste under different sintering atmospheres. J. Electron. Mater. 46, 4575 (2017). https://doi.org/10.1007/s11664-017-5464-2.

    Article  CAS  Google Scholar 

  38. J. Xie, J. Shen, J. Deng, and X. Chen, Influence of aging atmosphere on the thermal stability of low-temperature rapidly sintered Cu nanoparticle paste joint. J. Electron. Mater. 49, 2669 (2020). https://doi.org/10.1007/s11664-020-07951-z.

    Article  CAS  Google Scholar 

  39. H. Ji, J. Zhou, M. Liang, H. Lu, and M. Li, Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging. Ultrason. Sonochem. 41, 375 (2018). https://doi.org/10.1016/j.ultsonch.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  40. J.W. Yoon and J.H. Back, Effect of sintering conditions on the mechanical strength of Cu-sintered joints for high-power applications. Materials 11, 2105 (2018). https://doi.org/10.3390/ma11112105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. Riva, C. Buttay, B. Allard, and P. Bevilacqua, Migration issues in sintered-silver die attaches operating at high temperature. Microelectron. Reliab. 53, 1592 (2013). https://doi.org/10.1016/j.microrel.2013.07.103.

    Article  CAS  Google Scholar 

  42. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. Nakamoto, A low-temperature bonding process using mixed Cu-Ag nanoparticles. J. Electron. Mater. 39, 1283 (2010). https://doi.org/10.1007/s11664-010-1195-3.

    Article  CAS  Google Scholar 

  43. H. Naderi-Samani, R.S. Razavi, and R. Mozaffarinia, The effects of complex agent and sintering temperature on conductive copper complex paste. Heliyon 8, e12624 (2022). https://doi.org/10.1016/j.heliyon.2022.e12624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Jianfeng, Z. Guisheng, H. Anming, and Y. Zhou, Preparation of PVP coated Cu NPs and the application for low-temperature bonding. J. Mater. Chem. 21, 15981 (2011). https://doi.org/10.1039/C1JM12108A.

    Article  Google Scholar 

  45. J. Kahler, N. Heuck, A. Wagner, A. Stranz, E. Peiner, and A. Waag, Packaging, sintering of copper particles for die attach. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1587 (2012). https://doi.org/10.1109/TCPMT.2012.2201940.

    Article  CAS  Google Scholar 

  46. J. Li, Y. Xu, X. Zhao, Y. Meng, Z. Yin, Y. Wang, and T. Suga, Enhancement and mechanism of copper nanoparticle sintering in activated formic acid atmosphere at low temperature. ECS J. Solid State Sci. Technol. 10, 054004 (2021). https://doi.org/10.1149/2162-8777/abfd4a.

    Article  CAS  Google Scholar 

  47. C. Göbl and J. Faltenbacher, Low temperature sinter technology die attachment for power electronic applications, in 2010 6th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany (2010), pp. 1–5.

  48. W. Hong, M. Kim, C. Oh, Y. Joo, Y. Kim, and K. Hong, Pressureless silver sintering of silicon-carbide power modules for electric vehicles. Jom 72, 889 (2019). https://doi.org/10.1007/s11837-019-03815-y.

    Article  CAS  Google Scholar 

  49. M. Lu, Enhanced sintered silver for SiC wide bandgap power electronics integrated package module. J. Electron. Packag. 141, 031002 (2019). https://doi.org/10.1115/1.4042984.

    Article  CAS  Google Scholar 

  50. S. Chen, J. Wells, T. Raner, T. Moore, L. Stuart, C. LaBarbera, Y. Zheng, K. Lodoe, B. Boncella, T. Muraharasetty, and J. Skojec, Highly reliable silver sintering joints for power module application, in 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA (2023), pp. 2575–2580 .

  51. C. Yang, C.P. Wong, and M.M. Yuen, Printed electrically conductive composites: conductive filler designs and surface engineering. J. Mater. Chem. C 1, 4052 (2013). https://doi.org/10.1039/C3TC00572K.

    Article  CAS  Google Scholar 

  52. O.U. Uche, F.H. Stillinger, and S. Torquato, Concerning maximal packing arrangements of binary disk mixtures. Phys. A Stat. Mech. Appl. 342, 428 (2004). https://doi.org/10.1016/j.physa.2004.05.082.

    Article  Google Scholar 

  53. S. Yamada, J. Kanno, and M. Miyauchi, Multi-sized sphere packing in containers: optimization formula for obtaining the highest density with two different sized spheres. Inf. Media Technol. 6, 493 (2011). https://doi.org/10.11185/imt.6.493.

    Article  Google Scholar 

  54. W. Wang, G. Zou, Q. Jia, H. Zhang, B. Feng, Z. Deng, and L. Liu, Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Mater. Sci. Eng. A 793, 139894 (2020). https://doi.org/10.1016/j.msea.2020.139894.

    Article  CAS  Google Scholar 

  55. S.Y. Zhao, X. Li, Y.H. Mei, and G.Q. Lu, Novel interface material used in high power electronic die-attaching on bare Cu substrates. J. Mater. Sci. Mater. Electron. 27, 10941 (2016). https://doi.org/10.1007/s10854-016-5208-8.

    Article  CAS  Google Scholar 

  56. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, H. Kakiuchi, and Y. Yoshida, A low-temperature pressureless bonding process using a trimodal mixture system of Ag nanoparticles. J. Electron. Mater. 40, 2398 (2011). https://doi.org/10.1007/s11664-011-1750-6.

    Article  CAS  Google Scholar 

  57. M. Wang, Y. Mei, X. Li, and G.Q. Lu, Die-attach on nickel substrate by pressureless sintering a trimodal silver paste. Mater. Lett. 253, 131 (2019). https://doi.org/10.1016/j.matlet.2019.06.041.

    Article  CAS  Google Scholar 

  58. T. Hawa and M.R. Zachariah, Coalescence kinetics of unequal sized nanoparticles. J. Aerosol Sci. 37, 1 (2006). https://doi.org/10.1016/j.jaerosci.2005.02.007.

    Article  CAS  Google Scholar 

  59. Y. Zuo, J. Shen, H. Xu, and R. Gao, Effect of different sizes of Cu nanoparticles on the shear strength of Cu-Cu joints. Mater. Lett. 199, 13 (2017). https://doi.org/10.1016/j.matlet.2017.03.166.

    Article  CAS  Google Scholar 

  60. Y.Y. Dai, M.Z. Ng, P. Anantha, Y.D. Lin, Z.G. Li, C.L. Gan, and C.S. Tan, Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects. Appl. Phys. Lett. 108, 263103 (2016). https://doi.org/10.1063/1.4954966.

    Article  CAS  Google Scholar 

  61. Y. Peng, Y. Mou, J. Liu, and M. Chen, Fabrication of high-strength Cu–Cu joint by low-temperature sintering micron–nano Cu composite paste. J. Mater. Sci. Mater. Electron. 31, 8456 (2020). https://doi.org/10.1007/s10854-020-03380-0.

    Article  CAS  Google Scholar 

  62. C. Chen and K. Suganuma, Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size. Mater. Des. 162, 311 (2019). https://doi.org/10.1016/j.matdes.2018.11.062.

    Article  CAS  Google Scholar 

  63. C. Schwarzer, L. M. Chew, M. Schnepf, T. Stoll, J. Franke, and M. Kaloudis, Investigation of copper sinter material for die attach, in Proceedings of SMTA International (2018).

  64. H.J. Park, Y. Jo, S.S. Lee, S.Y. Lee, Y. Choi, and S. Jeong, Printable thick copper conductors from optically modulated multidimensional particle mixtures. ACS Appl. Mater. Interfaces 11, 20134 (2019). https://doi.org/10.1021/acsami.9b01855.

    Article  CAS  PubMed  Google Scholar 

  65. S.K. Tam, K.Y. Fung, and K.M. Ng, Copper pastes using bimodal particles for flexible printed electronics. J. Mater. Sci. 51, 1914 (2016). https://doi.org/10.1007/s10853-015-9498-7.

    Article  CAS  Google Scholar 

  66. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, and E. Ide, Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater. Trans. 49, 1537 (2008). https://doi.org/10.2320/matertrans.MF200805.

    Article  CAS  Google Scholar 

  67. J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, L. Liu, and Y. N. Zhou, Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packaging application, in Journal of Physics: Conference Series, vol. 379 (IOP Publishing, 2012).

  68. M. Asoro, D. Kovar, and P.J. Ferreira, Effect of surface carbon coating on sintering of silver nanoparticles: in situ TEM observations. Chem. Commun. 50, 4835 (2014). https://doi.org/10.1039/C4CC01547A.

    Article  CAS  Google Scholar 

  69. Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.F. Li, S. Nagao, and K. Suganuma, Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere. Mater. Des. 160, 1265 (2018). https://doi.org/10.1016/j.matdes.2018.11.003.

    Article  CAS  Google Scholar 

  70. X. Wang, Z. Zhang, Y. Feng, and F. Xiao, Anti-oxidative copper nanoparticle paste for Cu-Cu bonding at low temperature in air. J. Mater. Sci. Mater. Electron. 33, 817 (2021). https://doi.org/10.1007/s10854-021-07352-w.

    Article  CAS  Google Scholar 

  71. Y. Yuan, H. Wu, J. Li, P. Zhu, and R. Sun, Cu-Cu joint formation by low-temperature sintering of self-reducible Cu nanoparticle paste under ambient condition. Appl. Surf. Sci. 570, 151220 (2021). https://doi.org/10.1016/j.apsusc.2021.151220.

    Article  CAS  Google Scholar 

  72. Y. Gao, Y.B. Xiao, Z.Q. Liu, Y. Liu, and R. Sun, Low pressure Cu-Cu bonding using MOD ink-modified Cu particle paste for die-attachment of power semiconductors. J. Mater. Sci. Mater. Electron. 33, 3576 (2022). https://doi.org/10.1007/s10854-021-07551-5.

    Article  CAS  Google Scholar 

  73. S.A. Paknejad, A. Mansourian, J. Greenberg, K. Khtatba, L. Van Parijs, and S.H. Mannan, Microstructural evolution of sintered silver at elevated temperatures. Microelectron. Reliab. 63, 125 (2016). https://doi.org/10.1016/j.microrel.2016.06.007.

    Article  CAS  Google Scholar 

  74. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, and K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloys Compd. 780, 435 (2019). https://doi.org/10.1016/j.jallcom.2018.11.251.

    Article  CAS  Google Scholar 

  75. Y. Zuo, S. Carter-Searjeant, M. Green, L. Mills, and S.H. Mannan, High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticles. Mater. Lett. 276, 128260 (2020). https://doi.org/10.1016/j.matlet.2020.128260.

    Article  CAS  Google Scholar 

  76. Y. Mou, J. Liu, H. Cheng, Y. Peng, and M. Chen, Facile preparation of self-reducible Cu nanoparticle paste for low temperature Cu-Cu bonding. Jom 71, 3076 (2019). https://doi.org/10.1007/s11837-019-03517-5.

    Article  CAS  Google Scholar 

  77. W. Guo, Z. Zeng, X. Zhang, P. Peng, and S. Tang, Low-Temperature sintering bonding using silver nanoparticle paste for electronics packaging. J. Nanomater. 2015, 1 (2015). https://doi.org/10.1155/2015/897142.

    Article  Google Scholar 

  78. R. Kawabata, T. Matsuda, R. Seo, and A. Hirose, Metallization-free silver sinter bonding to silicon via in situ decomposition of silver oxalate. Mater. Lett. 300, 130205 (2021). https://doi.org/10.1016/j.matlet.2021.130205.

    Article  CAS  Google Scholar 

  79. Z. Zhang, C. Chen, A. Suetake, M.C. Hsieh, and K. Suganuma, Reliability of Ag sinter-joining die attach under harsh thermal cycling and power cycling tests. J. Electron. Mater. 50, 6597 (2021). https://doi.org/10.1007/s11664-021-09221-y.

    Article  CAS  Google Scholar 

  80. D. Ishikawa, H. Nakako, Y. Kawana, C. Sugama, M. Negishi, Y. Ejiri, S. Ueda, B. N. An, H. Wurst, B. Leyrer, T. Blank, and M. Weber, Copper Die-Bonding Sinter Paste: Sintering and Bonding Properties. In 2018 7th Electronic System-Integration Technology Conference (ESTC) (2018), pp. 1–10.

  81. S. Kwon, T.I. Lee, H.J. Lee, and S. Yoo, Improved sinterability of micro-scale copper paste with a reducing agent. Mater. Lett. 269, 127656 (2020). https://doi.org/10.1016/j.matlet.2020.127656.

    Article  CAS  Google Scholar 

  82. Y. Gao, J. Jiu, C. Chen, K. Suganuma, R. Sun, and Z.Q. Liu, Oxidation-enhanced bonding strength of Cu sinter joints during thermal storage test. J. Mater. Sci. Technol. 115, 251 (2022). https://doi.org/10.1016/j.jmst.2021.10.047.

    Article  CAS  Google Scholar 

  83. S. Fu, Y. Mei, X. Li, P. Ning, and G.Q. Lu, Parametric study on pressureless sintering of nanosilver paste to bond large-area (≥100 mm2) power chips at low temperatures for electronic packaging. J. Electron. Mater. 44, 3973 (2015). https://doi.org/10.1007/s11664-015-3842-1.

    Article  CAS  Google Scholar 

  84. Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, and F. Sun, Effect of sintering pressure on the porosity and the shear strength of the pressure-assisted silver sintering bonding. IEEE Trans. Device Mater. Reliab. 18, 240 (2018). https://doi.org/10.1109/TDMR.2018.2819431.

    Article  CAS  Google Scholar 

  85. X. Liu, S. Li, J. Fan, J. Jiang, Y. Liu, H. Ye, and G. Zhang, Microstructural evolution, fracture behavior and bonding mechanisms study of copper sintering on bare DBC substrate for SiC power electronics packaging. J. Mater. Res. Technol. 19, 1407 (2022). https://doi.org/10.1016/j.jmrt.2022.05.122.

    Article  CAS  Google Scholar 

  86. Y. Wu, G. Zou, S. Wang, W. Guo, H. Zhang, P. Peng, B. Feng, and L. Liu, Rapid and low temperature sintering bonding using Cu nanoparticle film for power electronic packaging. Appl. Surf. Sci. 603, 154422 (2022). https://doi.org/10.1016/j.apsusc.2022.154422.

    Article  CAS  Google Scholar 

  87. H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, and W. Guo, Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. J. Alloys Compd. 774, 487 (2019). https://doi.org/10.1016/j.jallcom.2018.10.067.

    Article  CAS  Google Scholar 

  88. H. Zheng, D. Berry, J.N. Calata, K.D.T. Ngo, S. Luo, and G.Q. Lu, Low-pressure joining of large-area devices on copper using nanosilver paste. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 915 (2013). https://doi.org/10.1109/TCPMT.2013.2258971.

    Article  CAS  Google Scholar 

  89. T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, and S. Luo, Low-Temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips. IEEE Trans. Compon. Packag. Technol. 33, 98 (2010). https://doi.org/10.1109/TCAPT.2009.2021256.

    Article  CAS  Google Scholar 

  90. J. Yan, D. Zhang, G. Zou, L. Liu, H. Bai, A. Wu, and Y.N. Zhou, Sintering bonding process with Ag nanoparticle paste and joint properties in high temperature environment. J. Nanomater. 2016, 1 (2016). https://doi.org/10.1155/2016/5284048.

    Article  CAS  Google Scholar 

  91. Y. Zuo, J. Shen, J. Xie, and L. Xiang, Influence of Cu micro/nano-particles mixture and surface roughness on the shear strength of Cu-Cu joints. J. Mater. Process. Technol. 257, 250 (2018). https://doi.org/10.1016/j.jmatprotec.2018.03.005.

    Article  CAS  Google Scholar 

  92. Z. Zhang, C. Chen, A. Suetake, M.C. Hsieh, A. Iwaki, and K. Suganuma, Pressureless and low-temperature sinter-joining on bare Si, SiC and GaN by a Ag flake paste. Scr. Mater. 198, 113833 (2021). https://doi.org/10.1016/j.scriptamat.2021.113833.

    Article  CAS  Google Scholar 

  93. Y. Zuo, J. Shen, Y. Hu, and R. Gao, Improvement of oxidation resistance and bonding strength of Cu nanoparticles solder joints of Cu-Cu bonding by phosphating the nanoparticle. J. Mater. Process. Technol. 253, 27 (2018). https://doi.org/10.1016/j.jmatprotec.2017.11.001.

    Article  CAS  Google Scholar 

  94. J. Dai, Y. Wang, T. Grant, W. Wang, M. Mat, and M. Morshed, High temperature reliability of pressureless sintered Cu joints for power SiC die attachment. Microelectron. Reliab. 150, 115219 (2023). https://doi.org/10.1016/j.microrel.2023.115219.

    Article  CAS  Google Scholar 

  95. L. Gao, X. Tian, C. Wu, Y. Xing, Y. Tan, X. Chen, and G. Lu, Nano-Silver pressureless sintering technology in power module packaging, in 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, Guangxi, China (2022), pp. 1452–1456.

  96. T. Matsuda, D. Yamagiwa, H. Furusawa, K. Sato, H. Yashiro, K. Nagao, J. Kim, T. Sano, Y. Kashiba, and A. Hirose, Reduction behavior of surface oxide on submicron copper particles for pressureless sintering under reducing atmosphere. J. Electron. Mater. 51, 1 (2022). https://doi.org/10.1007/s11664-021-09274-z.

    Article  CAS  Google Scholar 

  97. B. Hou, H. Huang, C. Wang, M. Zhou, and X. Zhang, Superb sinterability of the Cu paste consisting of bimodal size distribution Cu nanoparticles for low-temperature and pressureless sintering of large-area die attachment and the sintering mechanism, in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA (2022), pp. 2064–2070.

  98. X. Shen, S. Xi, L. Xu, T. Zhao, R. Sun, and J. Li, Pressureless sintering performance enhancement of Ag pastes by surface modification of Ag nanoparticles with tert-dodecyl mercaptan. J. Nanopart. Res. 24, 213 (2022). https://doi.org/10.1007/s11051-022-05591-4.

    Article  CAS  Google Scholar 

  99. F. Najafkhani, S. Kheiri, B. Pourbahari, and H. Mirzadeh, Recent advances in the kinetics of normal/abnormal grain growth: a review. Arch. Civ. Mech. Eng. 21, 29 (2021). https://doi.org/10.1007/s43452-021-00185-8.

    Article  Google Scholar 

  100. G. Li, J. Fana, S. Liao, P. Zhua, B. Zhang, T. Zhao, R. Sun, and C. P. Wong, Low temperature sintering of dendritic Cu based pastes for power semiconductor device interconnection, in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA (2019), pp. 81–86.

  101. Y. Mou, H. Cheng, Y. Peng, and M. Chen, Fabrication of reliable Cu-Cu joints by low temperature bonding isopropanol stabilized Cu nanoparticles in air. Mater. Lett. 229, 353 (2018). https://doi.org/10.1016/j.matlet.2018.07.061.

    Article  CAS  Google Scholar 

  102. W.L. Choi, Y.S. Kim, K.S. Lee, and J.H. Lee, Characterization of the die-attach process via low-temperature reduction of Cu formate in air. J. Mater. Sci. Mater. Electron. 30, 9806 (2019). https://doi.org/10.1007/s10854-019-01317-w.

    Article  CAS  Google Scholar 

  103. X. Kewei, J.N. Calata, Z. Hanguang, K.D.T. Ngo, and L. Guo-Quan, Simplification of the nanosilver sintering process for large-area semiconductor chip bonding: reduction of hot-pressing temperature below 200/spl deg/C. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 1271 (2013). https://doi.org/10.1109/TCPMT.2013.2261439.

    Article  CAS  Google Scholar 

  104. T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333 (2007). https://doi.org/10.1007/s11664-007-0230-5.

    Article  CAS  Google Scholar 

  105. G. Singh and P.M. Pandey, Ultrasonic assisted pressureless sintering for rapid manufacturing of complex copper components. Mater. Lett. 236, 276 (2019). https://doi.org/10.1016/j.matlet.2018.10.123.

    Article  CAS  Google Scholar 

  106. C. Chen, C. Choe, Z. Zhang, S. Nagao, and K. Suganuma, Effect of oxygen on Ag sintering technology with low temperature pressureless. 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China (2018), pp. 15–18.

  107. X. Li, L. Lin, C.J. Du, and J. Li, Effect of oxygen content on bonding performance of sintered silver joint on bare copper substrate. IEEE Trans. Compon. Packag. Manuf. Technol. 13, 391 (2023). https://doi.org/10.1109/TCPMT.2023.3264487.

    Article  Google Scholar 

  108. R. Khazaka, L. Mendizabal, and D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43, 2459 (2014). https://doi.org/10.1007/s11664-014-3202-6.

    Article  CAS  Google Scholar 

  109. K.S. Siow, S.T. Chua, B.D. Beake, and A.S. Zuruzi, Influence of sintering environment on silver sintered on copper substrate. J. Mater. Sci. Mater. Electron. 30, 6212 (2019). https://doi.org/10.1007/s10854-019-00924-x.

    Article  CAS  Google Scholar 

  110. S.K. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.C. Liu, S.G. Lin, and K. Suganuma, Nano-volcanic eruption of silver. Sci. Rep. 6, 34769 (2016). https://doi.org/10.1038/srep34769.PMID:27703220;PMCID:PMC5050507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. J.Y. Kim, J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, and P.L. Lee, Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125, 10684 (2003). https://doi.org/10.1021/ja0301673.

    Article  CAS  PubMed  Google Scholar 

  112. Y. Yasuda, E. Ide, and T. Morita, Evaluation of copper oxide-based interconnecting materials. Open Surf. Sci. J. (2011). https://doi.org/10.2174/1876531901103010123.

    Article  Google Scholar 

  113. T.F. Chen and K.S. Siow, Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints. J. Alloys Compd. 866, 158783 (2021). https://doi.org/10.1016/j.jallcom.2021.158783.

    Article  CAS  Google Scholar 

  114. H. Ren, F. Mu, S. Shin, L. Liu, G. Zou, and T. Suga, Low temperature Cu bonding with large tolerance of surface oxidation. AIP Adv. 9, 055127 (2019). https://doi.org/10.1063/1.5097382.

    Article  CAS  Google Scholar 

  115. T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, and N. Terada, Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste. J. Electron. Mater. 42, 1260 (2013). https://doi.org/10.1007/s11664-013-2583-2.

    Article  CAS  Google Scholar 

  116. C.H. Lee, E.B. Choi, and J.H. Lee, Characterization of novel high-speed die attachment method at 225°C using submicrometer Ag-coated Cu particles. Scr. Mater. 150, 7 (2018). https://doi.org/10.1016/j.scriptamat.2018.02.029.

    Article  CAS  Google Scholar 

  117. E.B. Choi, Y.J. Lee, and J.H. Lee, Rapid sintering by thermo-compression in air using a paste containing bimodal-sized silver-coated copper particles and effects of particle size and surface finish type. J. Alloys Compd. 897, 163223 (2022). https://doi.org/10.1016/j.jallcom.2021.163223.

    Article  CAS  Google Scholar 

  118. M.I. Kim, E.B. Choi, and J.H. Lee, Improved sinter-bonding properties of silver-coated copper flake paste in air by the addition of sub-micrometer silver-coated copper particles. J. Mater. Res. Technol. 9, 16006 (2020). https://doi.org/10.1016/j.jmrt.2020.11.069.

    Article  CAS  Google Scholar 

  119. J. Li, Q. Liang, T. Shi, J. Fan, B. Gong, C. Feng, J. Fan, G. Liao, and Z. Tang, Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding. J. Alloys Compd. 772, 793 (2019). https://doi.org/10.1016/j.jallcom.2018.09.115.

    Article  CAS  Google Scholar 

  120. D. Kim, C. Chen, S.J. Lee, S. Nagao, and K. Suganuma, Strengthening of DBA substrate with Ni/Ti/Ag metallization for thermal fatigue-resistant Ag sinter joining in GaN power modules. J. Mater. Sci. Mater. Electron. 31, 3715 (2020). https://doi.org/10.1007/s10854-020-02930-w.

    Article  CAS  Google Scholar 

  121. Y. Liu, C. Chen, Z. Zhang, M. Ueshima, T. Sakamoto, T. Naoe, H. Nishikawa, Y. Oda, and K. Suganuma, Development of crack-less and deformation-resistant electroplated Ni/electroless Ni/Pt/Ag metallization layers for Ag-sintered joint during a harsh thermal shock. Mater. Des. 224, 111389 (2022). https://doi.org/10.1016/j.matdes.2022.111389.

    Article  CAS  Google Scholar 

  122. J.C. Taylor, Platinum metallization on silicon and silicates. J. Mater. Res. 36, 211 (2021). https://doi.org/10.1557/s43578-020-00084-3.

    Article  CAS  Google Scholar 

  123. T. Satoh, K. Akedo, and T. Ishizaki, X-ray photoelectron spectroscopic study of the formation of Cu/Ni interface mediated by oxide phase. J. Alloys Compd. 582, 403 (2014). https://doi.org/10.1016/j.jallcom.2013.08.042.

    Article  CAS  Google Scholar 

  124. T. Ishizaki, K. Akedo, T. Satoh, and R. Watanabe, Pressure-free bonding of metallic plates with Ni affinity layers using Cu nanoparticles. J. Electron. Mater. 43, 774 (2014). https://doi.org/10.1007/s11664-013-2953-9.

    Article  CAS  Google Scholar 

  125. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Bonding of various metals using Ag metallo-organic nanoparticles-a novel bonding process using Ag metallo-organic nanoparticles. Mater. Sci. Forum 512, 383 (2006).

    Article  CAS  Google Scholar 

  126. S.A. Paknejad, G. Dumas, G. West, G. Lewis, and S.H. Mannan, Microstructure evolution during 300°C storage of sintered Ag nanoparticles on Ag and Au substrates. J. Alloys Compd. 617, 994 (2014). https://doi.org/10.1016/j.jallcom.2014.08.062.

    Article  CAS  Google Scholar 

  127. C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, and K. Tsuruta, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates. J. Mater. Sci. Mater. Electron. 29, 1785 (2017). https://doi.org/10.1007/s10854-017-8087-8.

    Article  CAS  Google Scholar 

  128. S.T. Chua and K.S. Siow, Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300°C. J. Alloys Compd. 687, 486 (2016). https://doi.org/10.1016/j.jallcom.2016.06.132.

    Article  CAS  Google Scholar 

  129. T. Matsuda, S. Yamada, S. Okubo, and A. Hirose, Antioxidative copper sinter bonding under thermal aging utilizing reduction of cuprous oxide nanoparticles by polyethylene glycol. J. Mater. Sci. (2023). https://doi.org/10.1007/s10853-023-08976-5.

    Article  Google Scholar 

  130. C. Chen, Z. Zhang, B. Zhang, and K. Suganuma, Micron-sized Ag flake particles direct die bonding on electroless Ni-P-finished DBC substrate: low-temperature pressure-free sintering, bonding mechanism and high-temperature aging reliability. J. Mater. Sci. Mater. Electron. 31, 1247 (2020). https://doi.org/10.1007/s10854-019-02636-8.

    Article  CAS  Google Scholar 

  131. C. Chen, C. Choe, D. Kim, Z. Zhang, X. Long, Z. Zhou, F. Wu, and K. Suganuma, Effect of oxygen on microstructural coarsening behaviors and mechanical properties of Ag sinter paste during high-temperature storage from macro to micro. J. Alloys Compd. 834, 155173 (2020). https://doi.org/10.1016/j.jallcom.2020.155173.

    Article  CAS  Google Scholar 

  132. S.Y. Zhao, X. Li, Y.H. Mei, and G.Q. Lu, Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron. Reliab. 55, 2524 (2015). https://doi.org/10.1016/j.microrel.2015.10.017.

    Article  CAS  Google Scholar 

  133. S. Sakamoto, T. Sugahara, and K. Suganuma, Microstructural stability of Ag sinter joining in thermal cycling. J. Mater. Sci. Mater. Electron. 24, 1332 (2013). https://doi.org/10.1007/s10854-012-0929-9.

    Article  CAS  Google Scholar 

  134. K.S. Siow and S.T. Chua, Thermal ageing studies of sintered micron-silver (Ag) joint as a lead-free bonding material. Met. Mater. Int. 26, 1404 (2020). https://doi.org/10.1007/s12540-019-00394-0.

    Article  CAS  Google Scholar 

  135. F. Qin, Y. Hu, Y. Dai, T. An, and P. Chen, Evaluation of thermal conductivity for sintered silver considering aging effect with microstructure based model. Microelectron. Reliab. 108, 113633 (2020). https://doi.org/10.1016/j.microrel.2020.113633.

    Article  CAS  Google Scholar 

  136. C. Choe, C. Chen, S. Noh, and K. Suganuma, Thermal shock performance of DBA/AMB substrates plated by Ni and Ni–P layers for high-temperature applications of power device modules. Materials 11, 2394 (2018). https://doi.org/10.3390/ma11122394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. C. Chen, Z. Zhang, D. Kim, T. Sasamura, Y. Oda, M.C. Hsieh, A. Iwaki, A. Suetake, and K. Suganuma, Interface reaction and evolution of micron-sized Ag particles paste joining on electroless Ni-/Pd-/Au-finished DBA and DBC substrates during extreme thermal shock test. J. Alloys Compd. 862, 158596 (2021). https://doi.org/10.1016/j.jallcom.2021.158596.

    Article  CAS  Google Scholar 

  138. C. Chen, C. Choe, D. Kim, and K. Suganuma, Lifetime prediction of a SiC power module by micron/submicron Ag sinter joining based on fatigue, creep and thermal properties from room temperature to high temperature. J. Electron. Mater. 50, 687 (2020). https://doi.org/10.1007/s11664-020-08410-5.

    Article  CAS  Google Scholar 

  139. Y. Gao, S. Takata, C. Chen, S. Nagao, K. Suganuma, A.S. Bahman, and F. Iannuzzo, Reliability analysis of sintered Cu joints for SiC power devices under thermal shock condition. Microelectron. Reliab. 100–101, 113456 (2019). https://doi.org/10.1016/j.microrel.2019.113456.

    Article  CAS  Google Scholar 

  140. H. Zhang, S. Nagao, K. Suganuma, H.J. Albrecht, and K. Wilke, Thermostable Ag die-attach structure for high-temperature power devices. J. Mater. Sci. Mater. Electron. 27, 1337 (2016). https://doi.org/10.1007/s10854-015-3894-2.

    Article  CAS  Google Scholar 

  141. R. Satoh, K. Arakawa, M. Harada, and K. Matsui, Thermal fatigue life of Pb-Sn alloy interconnections. IEEE Trans. Compon. Hybrids Manuf. Technol. 14, 224 (1991). https://doi.org/10.1109/33.76537.

    Article  CAS  Google Scholar 

  142. P.P. Paret, D.J. DeVoto, and S. Narumanchi, Reliability of emerging bonded interface materials for large-area attachments. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 40 (2016). https://doi.org/10.1109/TCPMT.2015.2499767.

    Article  CAS  Google Scholar 

  143. A. Meier, P. Chidambaram, and G.R. Edwards, A comparison of the wettability of copper-copper oxide and silver-copper oxide on polycrystalline alumina. J. Mater. Sci. 30, 4781 (1995). https://doi.org/10.1007/BF01154485.

    Article  CAS  Google Scholar 

  144. C. Chen, C. Choe, Z. Zhang, D. Kim, and K. Suganuma, Low-stress design of bonding structure and its thermal shock performance (−50 to 250°C) in SiC/DBC power die-attached modules. J. Mater. Sci. Mater. Electron. 29, 14335 (2018). https://doi.org/10.1007/s10854-018-9568-0.

    Article  CAS  Google Scholar 

  145. T. Furukawa, M. Shiraishi, Y. Yasuda, A. Konno, M. Mori, T. Morita, S. Watanabe, T. Arai, M. Nakamura, and D. Kawase, High power density side-gate HiGT modules with sintered Cu having superior high-temperature reliability to sintered Ag, in 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan (2017), pp. 263–266.

  146. H. Zhang, C. Chen, S. Nagao, and K. Suganuma, Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices. J. Electron. Mater. 46, 1055 (2017). https://doi.org/10.1007/s11664-016-5069-1.

    Article  CAS  Google Scholar 

  147. J.G. Bai, and G.Q. Lu, Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly. IEEE Trans. Device Mater. Reliab. 6, 436 (2006). https://doi.org/10.1109/TDMR.2006.882196.

    Article  CAS  Google Scholar 

  148. Y. Zhao, Y. Wu, K. Evans, J. Swingler, S. Jones, and X. Dai, Evaluation of Ag sintering die attach for high temperature power module applications, in 2014 15th International Conference on Electronic Packaging Technology, Chengdu, China (2014), pp. 200–204.

  149. R. Schmidt and U. Scheuermann, Separating failure modes in power cycling tests, in 2012 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, Germany (2012), pp. 1–6.

  150. L.R. GopiReddy, L.M. Tolbert, and B. Ozpineci, Power cycle testing of power switches: a literature survey. IEEE Trans. Power Electron. 30(5), 2465 (2015). https://doi.org/10.1109/TPEL.2014.2359015.

    Article  Google Scholar 

  151. R. Bayerer, T. Herrmann, T. Licht, J. Lutz, and M. Feller, Model for power cycling lifetime of IGBT modules—various factors influencing lifetime, in 5th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany (2008), pp. 1–6.

  152. R. Dudek, R. Döring, S. Rzepka, C. Ehrhardt, M. Hutter, J. Rudzki, F. Osterwald, R. Eisele, S. Stegmeier, K. Weidner, and M. Rittner, Investigations on power cycling induced fatigue failure of IGBTs with silver sinterea interconnects, in 2015 European Microelectronics Packaging Conference (EMPC), Friedrichshafen, Germany, 2015 (2015), pp. 1–8.

  153. M. Held, P. Jacob, G. Nicoletti, P. Scacco, and M. H. Poech, Fast power cycling test of IGBT modules in traction application, in Proceedings of Second International Conference on Power Electronics and Drive Systems, Singapore (1997), pp. 425–430.

  154. U. Scheuermann and S. Schuler, Power cycling results for different control strategies. Microelectron. Reliab. 50, 9 (2010). https://doi.org/10.1016/j.microrel.2010.07.135.

    Article  CAS  Google Scholar 

  155. A.A. Bajwa, E. Möller, and J. Wilde, Die-attachment technologies for high-temperature applications of Si and SiC-based power devices, in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA (2015), pp. 2168–2174.

  156. C. Weber, M. Hutter, S. Schmitz, and K. D. Lang, Dependency of the porosity and the layer thickness on the reliability of Ag sintered joints during active power cycling, in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA (2015), pp. 1866–1873.

  157. T. Ishizaki, D. Miura, A. Kuno, R. Nagao, S. Aoki, Y. Ohshima, T. Kino, M. Usui, and Y. Yamada, Power cycle reliability of Cu nanoparticle joints with mismatched coefficients of thermal expansion. Microelectron. Reliab. 64, 287 (2016). https://doi.org/10.1016/j.microrel.2016.07.031.

    Article  CAS  Google Scholar 

  158. AQG, ECPE Guideline, 324—Qualification of power modules for use in power electronics converter units in motor vehicles, in ECPE European Center for Power Electronics eV, Nürnberg, Germany (2021).

  159. Z. Deng, G. Zou, Q. Jia, B. Feng, H. Zhang, H. Ren, and L. Liu, Effect of Ag sintered bondline thickness on high-temperature reliability of SiC power devices. IEEE Trans. Compon. Packag. Manuf. Technol. 11, 1889 (2021). https://doi.org/10.1109/TCPMT.2021.3110997.

    Article  CAS  Google Scholar 

  160. D. Schweitzer, H. Pape, and L. Chen, Transient measurement of the junction-to-case thermal resistance using structure functions: chances and limits, in 2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA (2008), pp. 191–197.

  161. C. Weber, H. Walter, M. Van Dijk, M. Hutter, O. Wittler, and K. D. Lang, Combination of experimental and simulation methods for analysis of sintered ag joints for high temperature applications, in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA (2016), pp. 1335–1341.

  162. H. Ren, G. Zou, Q. Jia, Z. Deng, C. Du, W. Wang, and L. Liu, Thermal stress reduction strategy for high-temperature power electronics with Ag sintering. Microelectron. Reliab. 127, 114379 (2021). https://doi.org/10.1016/j.microrel.2021.114379.

    Article  CAS  Google Scholar 

  163. K. Yasui, S. Hayakawa, and T. Funaki, Reliability improvement of 3.3 kV full-SiC power modules for power cycling tests with sintered copper die attach technology. IEEE Trans. Compon. Packag. Manuf. Technol. 13, 1476 (2023). https://doi.org/10.1109/TCPMT.2023.3312281.

    Article  CAS  Google Scholar 

  164. H. Ren, G. Zou, Z. Zhao, M. Wan, H. Zhang, Q. Jia, and L. Liu, High-reliability wireless packaging for high-temperature SiC power device sintered by novel organic-free nanomaterial. IEEE Trans. Compon. Packag. Manuf. Technol. 10, 1953 (2020). https://doi.org/10.1109/TCPMT.2020.3038430.

    Article  CAS  Google Scholar 

  165. D. Kim, S. Nagao, C. Chen, N. Wakasugi, Y. Yamamoto, A. Suetake, T. Takemasa, T. Sugahara, and K. Suganuma, Online thermal resistance and reliability characteristic monitoring of power modules with ag sinter joining and Pb, Pb-free solders during power cycling test by SiC TEG chip. IEEE Trans. Power Electron. 36, 4977 (2021). https://doi.org/10.1109/TPEL.2020.3031670.

    Article  Google Scholar 

  166. A. Hutzler, A. Tokarski, S. Kraft, S. Zischler, and A. Schletz, Increasing the lifetime of electronic packaging by higher temperatures: solders vs. silver sintering, in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA (2014), pp. 1700–1706.

  167. K. Hosoya, Y. Kariya, H. Sugimoto, and K. Takahashi, Fatigue crack networks in the die-attach joint of a power semiconductor module during power cycling testing and effects of test parameters on the joint fatigue life. J. Electron. Mater. 49, 6175 (2020). https://doi.org/10.1007/s11664-020-08381-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52205324), the R&D Program of the Beijing Municipal Education Commission (KZ202210005005), and the Beijing Natural Science Foundation (L233038).

Author information

Authors and Affiliations

Authors

Contributions

ZC: Conceptualization; Investigation; Writing—Original draft. QJ: Methodology; Supervision; Writing—Review & editing. HZ: Methodology; Supervision. YW: Methodology; Supervision. LM: Methodology; Writing—Review & editing. GZ: Methodology; Writing—Review & editing. FG: Formal analysis.

Corresponding authors

Correspondence to Limin Ma or Fu Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Jia, Q., Zhang, H. et al. Review on Shear Strength and Reliability of Nanoparticle Sintered Joints for Power Electronics Packaging. J. Electron. Mater. 53, 2703–2726 (2024). https://doi.org/10.1007/s11664-024-10970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10970-9

Keywords

Navigation