Skip to main content

Advertisement

Log in

Low-stress design of bonding structure and its thermal shock performance (− 50 to 250 °C) in SiC/DBC power die-attached modules

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-stress design of bonding technology with a sandwich structure of sintered Ag and tungsten (W) thin film was developed for SiC power die-attached modules. The die-attached bonding layer was designed as sintered Ag/W/sintered Ag structure. Experiment results show that the initial bonding strength was larger than 65 MPa for this die-attached structure and larger than 35 MPa with a thermal shock test from − 50 to 250 °C for 1000 cycles. These results are largely better than that almost all sintering Ag technology reported in previous studies. Furthermore, the sandwich structure also compared with the sintered Ag structure which just using sintered Ag paste as bonding layer. The thickness of Ag paste is set as 100, 200 and 500 µm in the sintered Ag structure. The results show that the initial bonding strength of sintered Ag structure was about 60–70% of the value of W sandwich structure and about one-third of that after 1000 cycles. X-ray and SEM observation revealed that sandwich structure significantly decreased the size of crack extension in the sintered Ag layer during the thermal shock test. Finite element analysis reveal that the shear stress at the pore location of sandwich structure decreased to almost half values of the sintered Ag structure with the thickness of sintered Ag of 500 µm, and decreased almost 20% compared with the thickness of sintered Ag of 100 µm. The bonding technology with the W sandwich structure should be an attractive for low stress design in SiC power die-attached modules, which significantly increased its function for long-term high temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Kaminski, SiC and GaN devices-competition or coexistence, IEEE CIPS, (2012) pp 393–403

  2. P.G. Neudeck, R.S. Okojie, L.-Y. Chen, High-temperature electronics—a role for wide bandgap Semiconductors, Proc. IEEE. 90 (2002) pp 1065–1076

  3. H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Met. Mater. Trans. B 41, 824–832 (2010)

    Article  Google Scholar 

  4. T. Funaki, J.C. Balda, J. Junghans, A.A. Kashyap, F.D. Barlow, H.A. Mantooth, T. Kimoto, T. Hikihara, SiC JFET dc characteristics under extremely high ambient temperatures. IEICE Electron. Express 1, 523–527 (2004)

    Article  Google Scholar 

  5. L.N. Ramanathan, J.W. Jang, J.K. Lin, D.R. Frear, Solid-state annealing behavior of two high-Pb solders, 95Pb5Sn and 90Pb10Sn, on Cu under bump metallurgy. J. Electron. Mater. 34, 43–46 (2005)

    Article  Google Scholar 

  6. K.S. Kim, C.H. Yu, N.H. Kim, H.J. Chang, E.G. Chang, Isothermal aging characteristics of Sn-Pb micro solder bumps. Microelectron. Reliab. 43, 757–763 (2003)

    Article  Google Scholar 

  7. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. Rep. 49, 1–60 (2005)

    Article  Google Scholar 

  8. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)

    Article  Google Scholar 

  9. C. Chen, S. Nagao, K. Suganuma, J. Jiu, T. Sugahara, H. Zhang, T. Iwashige, K. Sugiura, K. Tsuruta, Macroscale and microscale fracture toughness of microporous sintered Ag for applications in power electronic devices. Acta Mater. 129, 41–51 (2017)

    Article  Google Scholar 

  10. K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014)

    Article  Google Scholar 

  11. S.P. Chen, Z.K. Kao, J.L. Lin, Y.C. Liao, Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures. ACS Appl. Mater. Interfaces 4, 7064–7068 (2012)

    Article  Google Scholar 

  12. C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, Mechanical deformation of sintered porous Ag die attach at high temperature and its size effect for wide-bandgap power device design. J. Electron. Mater. 46, 1576–1586 (2017)

    Article  Google Scholar 

  13. C. Chen, S. Nagao, K. Suganuma, J. Jiu, H. Zhang, T. Sugahara, T. Iwashige, K. Sugiura, K. Tsuruta, Self-healing of cracks in Ag joining layer for die-attachment in power devices. Appl. Phys. Lett. 109, 093503 (2016)

    Article  Google Scholar 

  14. S. Sakamoto, T. Sugahara, K. Suganuma, Microstructural stability of Ag sinter joining in thermal cycling. J. Mater. Sci. 24, 1332–1340 (2013)

    Google Scholar 

  15. C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, Low-Stress Design for SiC Power Modules with Sintered Porous Ag Interconnection, Proceedings of 66th IEEE Electronic Components and Technology Conference (ECTC), (2016) pp 2058–2062

  16. N. Heuck, S. Muller, G. Palm, A. Bakin, A. Waag, Swelling phenomena in sintered die-attached structure at high temperature: reliability problems and solutions for an operation above 350 °C. IMAPS International Conference and Exhibition on High Temperature Electronics (HITEC), (2010) pp 18–25

  17. Y. Mei, G.-Q. Lu, X. Chen, G. Chen, S. Luo, D. Ibitayo, Investigation of post-etch copper residue on direct bonded copper (DBC) substrates. J. Electron. Mater. 40, 2119–2125 (2011)

    Article  Google Scholar 

  18. Y. Mei, G.-Q. Lu, X. Chen, G. Chen, S. Luo, D. Ibitayo, Migration of sintered nanosilver die-attach material on alumina substrate between 250 °c and 400 °c in dry air. IEEE Trans. Device Mater. Reliab. 11, 316–322 (2011)

    Article  Google Scholar 

  19. Y. Mei, Y. Cao, G. Chen, X. Li, G.-Q. Lu, X. Chen, Rapid sintering nanosilver joint by pulse current for power electronics packaging. IEEE Trans. Device Mater. Reliab. 13, 258–265 (2013)

    Article  Google Scholar 

  20. J. Lia, C.M. Johnsona, C. Buttayb, W. Sabbahc, S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. J. Mater. Process. Technol. 215, 299–308 (2015)

    Article  Google Scholar 

  21. G.-Q. Lu, J.N. Calata, G. Lei, Low-temperature pressureless sintering technology for high-performance and high-temperature interconnection of semiconductor devices, IEEE 8th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (2007) pp 609–613

  22. Y. Moon, H. Kang, K. Kang, S. Moon, J. Hwang, Effect of thickness on surface morphology of silver nanoparticle layer during furnace sintering. J. Electron. Mater. 44, 1192–1199 (2015)

    Article  Google Scholar 

  23. K. Sugiura, T. Iwashige, J. kawai, K. Tsuruta, C. Chen, S. Nagao, H. Zhang, T. sugahara, K. suganuma, S. kurosaka, Y. Sakuma, Y. Oda., Prominent interface structure and bonding material of power module for high temperature operation, The 19th international symposium on power semiconductor devices &ICs, (2017) pp 491–494

  24. H. Zhang, S. Nagao, K. Suganuma, H. Albrecht, K. Wilke, Thermostable Ag die-attach structure for high-temperature power devices. J. Mater. Sci. 27, 1337–1344 (2016)

    Google Scholar 

  25. C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates. J. Mater. Sci. 29, 1785–1797 (2018)

    Google Scholar 

  26. T.G. Lei, J.N. Calata, G.-Q. Lu, X. Chen, S.F. Luo, Low-temperature sintering of nanoscale silver paste for attaching large-area (> 100 mm2) chips. IEEE Trans. Compon. Packag. Technol. 33, 98–104 (2010)

    Article  Google Scholar 

  27. J.G. Bai, G.-Q. Lu, Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly. IEEE Trans. Device Mater. Reliab. 6, 436–441 (2006)

    Article  Google Scholar 

  28. R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43, 2459–2466 (2014)

    Article  Google Scholar 

  29. M. Knoerr, S. Kraft, A. Schletz, Reliability Assessment of Sintered Nano-Silver Die Attachment for Power Semiconductors, 12th IEEE Electronics Packaging Technology Conference (EPTC), (2010) pp 56–61

  30. D.A. Shnawah, M.F. MohdSabri, I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 52, 90–99 (2012)

    Article  Google Scholar 

  31. K. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014)

    Article  Google Scholar 

  32. H. Zhang, C. Chen, S. Nagao, K. Suganuma, Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices. J. Electron. Mater. 46, 1055–1060 (2017)

    Article  Google Scholar 

  33. S. Egelkraut, L. Frey, M. Knoerr, A. Schletz, Evolution of shear strength and microstructure of die bonding technologies for high temperature applications during thermal aging, Proc. 12th Electron. Package Tech. Conf., (2010) pp 660–667

  34. T. Wang, X. Chen, G.Q. Lu, G. Lei, Low-Temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)

    Article  Google Scholar 

  35. S. Zabihzadeh, S. Van Petegem, L.I. Duarte, R. Mokso, A. Cervellino, H. Van Swygenhoven, Deformation behavior of sintered nanocrystalline silver layers. Acta Mater. 97, 116–123 (2015)

    Article  Google Scholar 

  36. S.T. Chua, K.S. Siow, Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 °C. J. Alloy. Compd. 687, 486–498 (2016)

    Article  Google Scholar 

  37. P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, X. Milhet, Ageing sintered silver: relationship between tensile behavior, mechanical properties and the nanoporous structure evolution. Mater. Sci. Eng. A 669, 379–386 (2016)

    Article  Google Scholar 

  38. H. Vijayakumar, A.H. Sriramamurthy, S.V. Nagender Naidu, Calculated phase diagrams of Cu-W, Ag-W and Au-W binary systems, Calphad 12, 177–184 (1988)

    Article  Google Scholar 

  39. G.W. Jones, J.A. Venables, Observation of surface diffusion by biassed secondary electron imaging: the case of Ag/W (110). Ultramicroscopy 18, 439–444 (1985)

    Article  Google Scholar 

  40. H. Zhang, C. Chen, J. Jiu, S. Nagao, K. Suganuma, High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device. J. Mater. Sci. 29, 8854–8862 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the JST Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology” (Grant No. JPMJAL1610). The authors thank Mr. Aiji Suetake for his help in the experiment and also thankful to the Network Joint Research Centre for Materials and Devices, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuantong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Choe, C., Zhang, Z. et al. Low-stress design of bonding structure and its thermal shock performance (− 50 to 250 °C) in SiC/DBC power die-attached modules. J Mater Sci: Mater Electron 29, 14335–14346 (2018). https://doi.org/10.1007/s10854-018-9568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9568-0

Navigation