Skip to main content
Log in

Manufacturing and Characterization of Sn-0.6Al Lead-Free Composite Solder Using Accumulative Extrusion Process

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this research, the manufacturing and characterization of a Sn-Al lead-free solder composite, reinforced with electric arc furnace dust, through an accumulative extrusion process was studied. To this end, one eutectic Sn-0.6Al solder alloy and three composite lead-free solders Sn-0.6Al/X%D (X = 0.5, 1, 1.5) were fabricated. The microstructure of the solders was investigated using x-ray diffraction (XRD) and a scanning electron microscope (SEM) equipped with an energy dispersion spectroscopy (EDS) detector. Thermal characteristics of the samples were investigated using differential scanning calorimetry (DSC). The wetting angle, density, electrical resistivity, microhardness, tensile strength and shear strength of the samples were also measured. The results of microstructural investigations indicated that the solder comprises the β-Sn phase and has a eutectic microstructure, and the increase in the number of accumulative extrusion passes results in a better, more uniform distribution of Al in the Sn matrix. The results of DSC tests showed a decrease in the melting point of the Sn-0.6Al solder alloy, which indicates successful alloying. The results showed that the contact angle of the Sn-0.6Al solder alloy with the substrate was 37° and the wetting angles of the Sn-0.6Al/X%D (X = 0.5, 1, 1.5) composite solders were 39°, 42° and 72°, respectively. Density measurements showed that, by fabrication of the Sn-0.6Al eutectic solder alloy, the density of the composite solder can be reduced by up to 18% compared to the Sn-37Pb alloy. Electrical resistivity measurements indicated that electrical resistivity of Sn-0.6Al/X%D (X = 0.5, 1, 1.5) composite solders was comparable to Sn-37Pb solder. Finally, mechanical test results showed that, by addition of 1% reinforcement particles, the microhardness, ultimate tensile strength and shear strength are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Tian, C. Hong, L. Hong, X. Yan, and P. Dai, J. Electron. Mater 48, 2685 (2019).

    Article  CAS  Google Scholar 

  2. S. Menon, E. George, M. Osterman, and M. Pecht, J. Mater. Sci. Mater. Electron 26, 4021 (2015).

    Article  CAS  Google Scholar 

  3. M. Abtew, and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  4. A. Al-Ezzi, A. Al-Bawee, F. Dawood, and A.A. Shehab, J. Electron. Mater 48, 8089 (2019).

    Article  CAS  Google Scholar 

  5. C.-J. Lee, K.D. Min, H.J. Park, J.-H. Kim, and S.-B. Jung, Electron. Mater. Lett 15, 693 (2019).

    Article  CAS  Google Scholar 

  6. A. Sharma, D.E. Xu, J. Chow, M. Mayer, H.-R. Sohn, and J.P. Jung, Electron. Mater. Lett 11, 1072 (2015).

    Article  CAS  Google Scholar 

  7. H.Y. Lee, A. Sharma, S.H. Kee, Y.W. Lee, J.T. Moon, and J.P. Jung, Electron. Mater. Lett 10, 997 (2014).

    Article  CAS  Google Scholar 

  8. M.E. Alam, and M. Gupta, Electron. Mater. Lett 9, 575 (2013).

    Article  CAS  Google Scholar 

  9. C. Wu, D.Q. Yu, C. Law, and L. Wang, Mater. Sci. Eng. R 44, 1 (2004).

    Article  CAS  Google Scholar 

  10. K. Zeng, and K.-N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  11. F. Guo, Composite lead-free electronic solders, in Lead-Free Electronic Solders, (Springer, 2006), pp. 129–145.

  12. T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1 (2010).

    Article  CAS  Google Scholar 

  13. H. Zhang, F. Sun, and Y. Liu, J. Mater. Sci. Mater. Electron 30, 340 (2019).

    Article  CAS  Google Scholar 

  14. S.-M. Lee, J.-W. Yoon, and S.-B. Jung, J. Mater. Sci. Mater. Electron 27, 1105 (2016).

    Article  CAS  Google Scholar 

  15. H. Sun, Y. Chan, and F. Wu, J. Mater. Sci. Mater. Electron 26, 5129 (2015).

    Article  CAS  Google Scholar 

  16. J. Bath, Lead-Free Soldering Standards. Springer, 271 (2007)

  17. T. Lee, W. Choi, K.-N. Tu, J. Jang, S. Kuo, J. Lin, D. Frear, K. Zeng, and J. Kivilahti, J. Mater. Res 17, 291 (2002).

    Article  CAS  Google Scholar 

  18. S.-Y. Hwang, J.-W. Lee, and Z.-H. Lee, J. Electron. Mater 31, 1304 (2002).

    Article  CAS  Google Scholar 

  19. J. Wasynczuk, and G. Lucey, NEPCON WEST 3, 1245 (1992).

    Google Scholar 

  20. T. Cheng, Y. Zhang, W.Y. Lai, and W. Huang, Adv. Mater 27, 3349 (2015).

    Article  CAS  Google Scholar 

  21. K.-S. Kim, B.-G. Park, H. Kim, H.-S. Lee, and S.-B. Jung, Curr. Appl Phys 15, S36 (2015).

    Article  Google Scholar 

  22. M.E. Alam, and M. Gupta, Development of extremely ductile lead-free Sn-Al solders for futuristic electronic packaging applications J. Electron. Mater 10, 515 (2014).

    CAS  Google Scholar 

  23. A. Sharma, A.K. Srivastava, and B. Ahn, Mater. Res. Express 6, 056520 (2019).

    Article  CAS  Google Scholar 

  24. X. Zhong, and M. Gupta, Appl. Phys 41, 095403 (2008).

    Google Scholar 

  25. S. Nai, J. Wei, and M. Gupta, Thin Solid Films 504, 401 (2006).

    Article  CAS  Google Scholar 

  26. F. Guo, J. Lee, T. Hogan, and K. Subramanian, J. Mater. Res 20, 364 (2005).

    Article  CAS  Google Scholar 

  27. ASTM, F. 756-00. Standard practice for assessment of hemolytic properties of materials. West Conshohocken, PA: ASTM International, (2000)

  28. W. Xing, X. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W. Wang, and M. Ding, J. Alloys Compd 695, 574 (2017).

    Article  CAS  Google Scholar 

  29. S. Hassan, K. Ho, and M. Gupta, Mater. Lett 58, 2143 (2004).

    Article  CAS  Google Scholar 

  30. L.Y. Aguirre-Perales, I.-H. Jung, and R.A. Drew, Acta Mater 60, 759 (2012).

    Article  CAS  Google Scholar 

  31. M.M. Salleh, A.M. Al-Bakri, M. Zan, F. Somidin, and N.F.M. Alui, Mater Sci. Eng. A 556, 633 (2012).

    Article  CAS  Google Scholar 

  32. X. Liu, Y. Han, H. Jing, J. Wei, and L. Xu, Mater. Sci. Eng. A 562, 25 (2013).

    Article  CAS  Google Scholar 

  33. M.S. Maa, A.M. Al-Bakri, H. Kamarudin, M. Bnhussain, and F. Somidin, Phys Procedia 22, 299 (2011).

    Article  CAS  Google Scholar 

  34. Y. Tang, Y. Pan, and G. Li, J. Mater. Sci. Mater. Electron 24, 1587 (2013).

    Article  CAS  Google Scholar 

  35. S.-Y. Chang, C.-F. Chen, S.-J. Lin, and T.Z. Kattamis, Electrical resistivity of metal matrix composites Acta Mater 51, 6291 (2003).

    Article  CAS  Google Scholar 

  36. M. Gupta, G. Karunasiri, and M. Lai, Mater. Sci. Eng. A 219, 133 (1996).

    Article  Google Scholar 

  37. D. Lloyd, Int. Mater. Rev. 39, 1 (1994).

    Article  CAS  Google Scholar 

  38. S.U. Reddy, N. Srikanth, M. Gupta, and S.K. Sinha, Adv. Eng. Mater 6, 957 (2004).

    Article  CAS  Google Scholar 

  39. A. El-Daly, W. Desoky, T. Elmosalami, M. El-Shaarawy, and A. Abdraboh, Mater. Des 65, 1196 (2015).

    Article  CAS  Google Scholar 

  40. H.K. Rafi, T.L. Starr, and B.E. Stucker, Int. J. Adv. Manuf. Technol 69, 1299 (2013).

    Article  Google Scholar 

  41. R. Sayyadi, and H. Naffakh-Moosavy, Mater. Sci. Eng. A 735, 367 (2018).

    Article  CAS  Google Scholar 

  42. N. Hansen, Acta Metall 25, 863 (1977).

    Article  CAS  Google Scholar 

  43. D. Dunand, and A. Mortensen, Acta Metall. Mater 39, 127 (1991).

    Article  CAS  Google Scholar 

  44. Z. Szaraz, Z. Trojanova, M. Cabbibo, and E. Evangelista, Mater. Sci. Eng. A 462, 225 (2007).

    Article  CAS  Google Scholar 

  45. H. Mavoori, and S. Jin, J. Electron. Mater 27, 1216 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Taherizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani Bakhtiarvand, N., Taherizadeh, A., Maleki, A. et al. Manufacturing and Characterization of Sn-0.6Al Lead-Free Composite Solder Using Accumulative Extrusion Process. J. Electron. Mater. 50, 6372–6385 (2021). https://doi.org/10.1007/s11664-021-09143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09143-9

Keywords

Navigation