Skip to main content
Log in

Development of high strength Sn-Mg solder alloys with reasonable ductility

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This study discussed the development of a series of new lead-free Sn-Mg solders by incorporating varying amounts of Mg (0.8, 1.5 and 2.5 wt. %) into pure Sn using disintegrated melt deposition technique followed by room temperature extrusion. All extruded Sn and Sn-Mg solder samples were characterized. Microstructural characterization studies revealed equiaxed grain morphology, minimal porosity and relatively uniform distribution of secondary phase. Better coefficient of thermal expansion was observed for Sn-2.5Mg sample when compared to conventional Sn-37Pb solder. Melting temperature of Sn-1.5Mg was found to be 212°C which is much lower than the conventional Sn-Ag-Cu or Sn-Cu (227°C) solders. Microhardness was increased with increasing amount of Mg in pure Sn. Room temperature tensile test results revealed that newly developed Sn-Mg solders exhibit enhanced strengths (0.2% yield strength and ultimate tensile strength) with comparable (if not better) ductility when compared to other commercially available and widely used Sn-based solder alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Subramanian and J. G. Lee, JOM 55, 26 (2003).

    Article  Google Scholar 

  2. R. A. Fournelle, JOM 55, 49 (2003).

    Article  Google Scholar 

  3. S. M. L. Nai, J. Wei, and M. Gupta, Mater. Sci. Eng. A 423, 166 (2006).

    Article  Google Scholar 

  4. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R. Reports 27, 95 (2000).

    Article  Google Scholar 

  5. M. E. Alam, S. M. L. Nai, and M. Gupta, J. Alloys Comp. 476, 199 (2009).

    Article  CAS  Google Scholar 

  6. O. A. Ogunseitan, JOM 59, 12 (2007).

    Article  CAS  Google Scholar 

  7. California Department of Toxic Substances (Sacramento, CA), Electronic Hazardous Waste, www.dtsc.ca.gov/HazardousWaste/ EWaste/(2007), Last accessed on 20 September 2012.

  8. Restriction of Hazardous Substances Directive (RoHS) from different perspectives http://www.mel.nist.gov/msid/SSP/standard_landscape/RoHS_analysis.html Last accessed 20 September 2012.

  9. J. L. Freer and Jr. J. W. Morris, J. Electron. Mater. 21, 647 (1992).

    Article  CAS  Google Scholar 

  10. M. Hansen and K. Anderko, Constitution of Binary Alloys, p. 55, McGraw-Hill, New York (1958).

    Google Scholar 

  11. F. Hua and J. Glazer, Proc. of 1997 TMS Annual Meeting and Exhibition on Design and Reliability of Lead-Free Solders and Solder Interconnects (eds. R. K. Mahidhara, D. R. Frear, S. M. L. Sastry, K. L. Liaw, and W. L. Winterbottom), p. 65, The Minerals, Metals and Materials Society, Warrendale, PA, USA (1997).

  12. J. Glazer, Int. Mater. Rev. 40, 65 (1995).

    Article  CAS  Google Scholar 

  13. Solid State Technology, http://ap.pennnet.com/display_article/289102/36/ARCHI/none/none/1/Raw_Materials-Pressure-Solder-Surcharge (2007) Last assessed 20 September 2012.

  14. Solid State Technology, http://smt.pennnet.com/Articles/Article_Display.cfm?ARTICLE_ID=291515&p=35&pc=ENL (2007), Last assessed 20 September 2012.

  15. Cost of Lead-Free Solder Materials: A research report by the IPC Solder Products Value Council. http://www.adhesivesmag.com. Last assessed 20 September 2012.

  16. http://www.kitcometals.com/charts/. Last assessed 20 September 2012.

  17. W. Gibson, S. Choi, T. R. Bieler, and K. N. Subramanian, Proceedings of the 1997 IEEE International Symposium on Electronics and the Environment, p. 246, San Francisco, USA (1997).

    Google Scholar 

  18. S. Lu, F. Luo, J. Chen, and B. Wang, Proc. International Conference on Electronic Packaging Technology & High Density Packaging, ICEPT-HDP (eds. K. Bi and F. Xiao), p. 1, IEEE Conference Publications, Shanghai, China (2008).

  19. P. Wu and K. W. Bai, US Patent 6824039 (2004).

  20. K. F. Ho, M. Gupta, and T. S. Srivatsan, Mater. Sci. Eng. A 369, 302 (2004).

    Article  Google Scholar 

  21. R. A. Karnesky, L. Meng, and D. C. Dunand, Acta Mater. 55, 1299 (2007).

    Article  CAS  Google Scholar 

  22. S. M. L. Nai, J. Wei, and M. Gupta, J. Electron. Mater. 37, 515 (2008).

    Article  CAS  Google Scholar 

  23. K. D. Kim and D. D. L. Chung, J. Electron. Mater. 31, 933 (2002).

    Article  CAS  Google Scholar 

  24. F. Guo, J. G. Lee, T. Hogan, and K. N. Subramanian, J. Mater. Res. 20, 364 (2005).

    Article  CAS  Google Scholar 

  25. P. E. Gise and R. Blanchard, Semiconductor and Integrated Circuit Fabrication Techniques, p. 21, Reston Pub. Co, Reston, VA (1979).

    Google Scholar 

  26. J. R. Devis, P. Allen, S. R. Lampman, T. B. Zorc, S. D. Henry, J. L. Daquila, A. W. Ronke, J. Jakel, and K. L. O’Keefe, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, p. 1132, Formarly tenth edition, ASM Handbook, Vol. 2, ASM, Metal Park, Ohio (1993).

    Google Scholar 

  27. Technical data sheet, Qualitek Group of Companies, Qualitek, Singapore, www.qualitek.com. Last assessed 20 September 2012.

  28. D. Lin, G. X. Wang, T. S. Srivatsan, M. Al-Hajri, and M. Petraroli, Mater. Lett. 53, 333 (2002).

    Article  CAS  Google Scholar 

  29. J. L. Marshal and J. Calderon, Soldering Surf. Mount Technol. 26, 22 (1997).

    Article  Google Scholar 

  30. H. Baker, Alloy Phase Diagrams, p. 283, Formarly Tenth Edition, ASM Handbook, Vol. 3, ASM, Metal Park, Ohio, (1993).

    Google Scholar 

  31. H. S. Kim, D. S. Suhr, G. H. Kim, and D. W. Kum, Met. Mater. Int. 2, 15 (1996).

    Article  CAS  Google Scholar 

  32. R. H. Short and G. P. Evans, Assem. Eng. 31, 44 (1988).

    Google Scholar 

  33. W. D. Callister, Materials Science and Engineering: An Introduction, p. 174, 6th ed., Wiley, Malaysia (2007).

    Google Scholar 

  34. G. F. Bocchinni, The Int. J. Powder Metallurgy 22, 185 (1986).

    Google Scholar 

  35. M. Morishita and V. Koyama, J. Alloy. Compd. 398, 12 (2005).

    Article  CAS  Google Scholar 

  36. G. E. Dieter, Mechanical Metallurgy, p. 191, 2nd Edition, McGraw-Hill, Inc., USA (1976).

    Google Scholar 

  37. S. M. L. Sastry, D. R. Frear, G. Kuo, and K. L. Jerina, Proc. Mechanics of Solder Wetting and Spreading (eds. F. G. Yost, F. M. Hosking, and D. R. Frear), p. 299, Van Nostrand, New York (1993).

  38. D. C. Lin, S. Liu, T. M. Guo, G. X. Wang, T. S. Srivatsan, and M. Petraroli, Mater. Sci. Eng. A 360, 285 (2003).

    Article  Google Scholar 

  39. M. Kouzeli and A. Mortensen, Acta Mater. 50, 39 (2002).

    Article  CAS  Google Scholar 

  40. S. F. Hassan and M. Gupta, Mater. Sci. Eng. A 425, 22 (2006).

    Article  Google Scholar 

  41. X. L. Zhong and M. Gupta, J. Phys. D — Appl. Phys. 41, 095403 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Ershadul Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M.E., Gupta, M. Development of high strength Sn-Mg solder alloys with reasonable ductility. Electron. Mater. Lett. 9, 575–585 (2013). https://doi.org/10.1007/s13391-013-2168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-2168-5

Keywords

Navigation