Skip to main content
Log in

Effects of Microstructure and Material Composition on the Formation Kinetics of Passive Film and Pitting Behavior of Super 13Cr Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of the microstructure and material composition on the formation kinetics of passive film and pitting behavior of super 13Cr stainless steel (S13Cr SS) were investigated and compared with those of 2Cr13 stainless steel (2Cr13 SS). The results indicated that the passive film formed on S13Cr SS surface quickly reached a stable state, which was attributed to two reasons. The small grain size coupled with the high dislocations density increased the number of nucleation sites for passive film formation, and the high material composition enhanced the Cr and Mo compound contents in the passive film. The passive film on S13Cr SS was more compact and thicker than that on 2Cr13 SS. The pit depth on S13Cr SS was relatively shallow after potentiodynamic polarization. Therefore, the protective properties of the passive film on S13Cr SS increased, and the pitting corrosion resistance of S13Cr SS was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] Y. Hua, S. Mohammed, R. Barker, and A. Neville: J. Mater. Sci. Technol., 2020, vol. 41, pp. 21-32.

    Article  Google Scholar 

  2. [2] H. Zhang, Y.L. Zhao, and Z.D. Jiang: Mater. Lett., 2005, vol. 59, pp. 3370-74.

    Article  CAS  Google Scholar 

  3. [3] T. Sunaba, T. Ito, Y. Miyata, S. Asakura, T. Shinohara, T. Yakou, Y. Tomoe, and H. Honda: Corrosion., 2014, vol. 70, pp. 988-999.

    Article  Google Scholar 

  4. [4] T. Doi, T. Adachi, T. Kudo, and N. Usuki: Corros. Sci., 2020, vol. 177, pp. 108931.

    Article  CAS  Google Scholar 

  5. [5] X.Q. Yue, L. Zhang, C. Sun, S.S. Xu, C. Wang, M.X. Lu, A. Neville, and Y. Hua: Corros. Sci., 2020, vol. 169, pp. 108640.

    Article  CAS  Google Scholar 

  6. [6] Y. Zhao, J.F. Xie, G.X. Zeng, T. Zhang, D.K. Xu, and F.H. Wang: Electrochim. Acta, 2019, vol. 293, pp. 116-27.

    Article  CAS  Google Scholar 

  7. [7] M. Javidi, S.M.S Haghshenas, and M.H. Shariat: Corros. Sci., 2020, vol. 163, pp. 108230.

    Article  CAS  Google Scholar 

  8. [8] H.J. Lee, S.H. Kim, and C. Jang: Mater. Charact., 2018, vol. 138, pp. 245-54.

    Article  CAS  Google Scholar 

  9. [9] R.P. Oleksak, J.P. Baltrus, L. Teeter, M. Ziomek-Moroz, and Ö.N. Doğan: Corrosion., 2018, vol. 74, pp. 1047-53.

    Article  Google Scholar 

  10. [10] R.P. Oleksak, J.H. Tylczaka, G.R. Holcomba, and Ö.N. Doğana: Corros. Sci., 2020, vol. 164, pp. 108316.

    Article  CAS  Google Scholar 

  11. [11] Y.G. Zhao, W. Liu, Y.M. Fan, E.D. Fan, B.J. Dong, T.Y. Zhang, and X.G. Li: Corros. Sci., 2020, vol. 168, pp. 108591.

    Article  CAS  Google Scholar 

  12. Wang L, Dong C, Yu Q, Man C, Hu Y, Dai Z, Li X: Metall. Mater. Trans. A., 2019, vol. 50, pp. 388-400.

    Article  Google Scholar 

  13. [13] L.N. Xu, X.Q. Xu, C.X. Yin, and L.J. Qiao: Mater. Res. Express., 2019, vol. 6, pp. 096512.

    Article  CAS  Google Scholar 

  14. [14] L. Wei, X.L. Pang, and K.W. Gao: Corros. Sci., 2016, vol. 111, pp. 637-48.

    Article  CAS  Google Scholar 

  15. [15] K.H. Jung and S.J. Kim: Appl. Surf. Sci., 2019, vol. 483, pp. 417-24.

    Article  CAS  Google Scholar 

  16. [15] X. Qi, H.H. Mao, and Y.T. Yang: Corros. Sci., 2017, vol. 120, pp. 90-98.

    Article  CAS  Google Scholar 

  17. [16] B.S. Kumar, V. Kain, and B. Vishwanadh: Corrosion., 2017, vol. 73, pp. 362-78.

    Article  CAS  Google Scholar 

  18. X.P. Li, Y. Zhao, W.L. Qi, J.F. Xie, J.D. Wang, B. Liu, G.X. Zeng, T. Zhang, and F.H. Wang: Appl. Surf. Sci., 2019, vol. 469, pp. 146-61.

    Article  CAS  Google Scholar 

  19. [18] W. Liu, S.L. Lu, P. Zhang, J.J. Dou, and Q.H. Zhao: Appl. Surf. Sci., 2016, vol. 379, pp. 163-70.

    Article  CAS  Google Scholar 

  20. [19] W. Liu, J.J. Dou, S.L. Lu, P. Zhang, and Q.H. Zhao: Appl. Surf. Sci., 2016, vol. 367, pp. 438-48.

    Article  CAS  Google Scholar 

  21. [20] C. Man, C.F. Dong, T.T. Liu, D.C. Kong, D.K. Wang, and X.G. Li: Appl. Surf. Sci., 2019, vol. 467-468, pp. 193-205.

    Article  Google Scholar 

  22. [21] S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, N. Chen, and X.Y. Ge: Corros. Sci., 2016, vol. 103, pp. 95-104.

    Article  Google Scholar 

  23. [22] V.B. Singh and M. Ray: J. Mater. Sci., 2007, vol. 42, pp. 8279-86.

    Article  CAS  Google Scholar 

  24. [23] A. Fattah-Alhosseini and S. Vafaeian: J. Alloy. Compd., 2015, vol. 639, pp. 301-07.

    Article  CAS  Google Scholar 

  25. [24] J.B. Sun, G.A. Zhang, W. Liu, and M.X. Lu: Corros. Sci., 2012, vol. 57, pp. 131-38.

    Article  CAS  Google Scholar 

  26. [25] Y.M. Fan, W. Liu, S.M. Li, W. Banthukul, Y.G. Zhao, B.J. Dong, T.Y. Zhang, T. Chowwanonthapunya, and X.G. Li: J. Mater. Sci. Technol., 2020, vol. 39, pp. 190-99.

    Article  Google Scholar 

  27. [26] A.F. Avelino, W.S. Araújo, D.F. Dias, L.P.M. dos Santos, A.N. Correia, and P.D. Lima-Neto: Electrochim. Acta, 2018, vol. 286, pp. 339-49.

    Article  CAS  Google Scholar 

  28. [27] Z.H. Dong, T. Zhu, W. Shi, and X.P. Guo: Acta Phys. Chim. Sin., 2011, vol. 27, pp. 905-12.

    Article  CAS  Google Scholar 

  29. [28] A.B. Kalea, B. Kim, D. Kim, E.G. Castle, M. Reece, and S. Choi: Mater. Lett., 2020, vol. 63, pp. 110204.

    Google Scholar 

  30. [29] T. Nishimura: Corros. Sci., 2010, vol. 52, pp. 3609-14.

    Article  CAS  Google Scholar 

  31. [30] D.D. Macdonald: Electrochim. Acta, 2011, vol. 56, pp. 1761-72.

    Article  CAS  Google Scholar 

  32. [31] M.E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A.L. Bunge, E.A. White, D.P. Riemer, and M. Musiani: J. Electrochem. Soc., 2013, vol. 160, pp. C215-C225.

    Article  CAS  Google Scholar 

  33. [32] Y.G. Zhao, W. Liu, W. Banthukul, Y.M. Fan, and X.G. Li: Corros. Eng. Sci. Techn., 2020, vol. 55, pp. 205-16.

    Article  CAS  Google Scholar 

  34. [33] S.Q. Guo, L.N. Xu, L. Zhang, W. Chang, and M.X. Lu: Corros. Sci., 2016, vol. 110, pp. 123-33.

    Article  CAS  Google Scholar 

  35. [34] R.H. Jung, H. Tsuchiya, and S. Fujimoto: Corros. Sci., 2012, vol. 58, pp. 62-68.

    Article  CAS  Google Scholar 

  36. [35] R.V. Shankar and L.K. Singhal: J. Mater. Sci., 2009, vol. 44, pp. 2327-33.

    Article  Google Scholar 

  37. [36] B.J. Dong, W. Liu, Y. Zhang, W. Banthukul, Y.G. Zhao, T.Y. Zhang, Y.M. Fan, and X.G. Li: J. Nat. Gas. Sci. Eng., 2020, vol. 80, pp. 103371.

    Article  CAS  Google Scholar 

  38. [37] H. Luo, C.F. Dong, X.G. Li, and K. Xiao: Electrochim. Acta, 2012, vol. 64, pp. 211-20.

    Article  CAS  Google Scholar 

  39. [38] F.F.L. Wegrelius and I. Olefjord: J. Electrochem. Soc., 1999, vol. 146, pp. 1397-1406.

    Article  CAS  Google Scholar 

  40. [39] J.B. Huang, X.Q. Wu, and E.H. Han: Corros. Sci., 2010, vol. 52, pp. 3444-52.

    Article  CAS  Google Scholar 

  41. [40] J. Xu, X.Q. Wu, and E.H. Han: Electrochim. Acta, 2012, vol. 71, pp. 219-26.

    Article  CAS  Google Scholar 

  42. [41] D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, C. Man, J.Z. Yao, K. Xiao, and X.G. Li: Electrochim. Acta, 2018, vol. 276, pp. 293-303.

    Article  CAS  Google Scholar 

  43. [42] C. Zhang, K.C. Chan, Y. Wu, and L. Liu: Acta. Mater., 2012, vol. 60, pp. 4152-59.

    Article  CAS  Google Scholar 

  44. [43] H.C Tian, X.Q. Chen, Y. Wang, C.F. Dong, and X.G. Li: Electrochim. Acta, 2018, vol. 267, pp. 255-68.

    Article  CAS  Google Scholar 

  45. [44] X.Q. Yue, L. Zhang, Y. Wang, S.S. Xu, C. Wang, M.X. Lu, A. Neville, and Y. Hua: Corros. Sci., 2020, vol. 163, pp. 108277.

    Article  CAS  Google Scholar 

  46. [45] X.Q. Yue, L. Zhang, L. Ma, M.X. Lu, A. Neville, and Y. Hua: Corros. Sci., 2021, vol. 178, pp. 108983.

    Article  CAS  Google Scholar 

  47. [46] K. Chandra, V. Kain, and R. Tewari: Corros. Sci., 2013, vol. 67, pp. 118-29.

    Article  CAS  Google Scholar 

  48. [47] Y.S. Choi, J.G. Kim, Y.S. Park, and J.Y. Park: Mater. Lett., 2007, vol. 61, pp. 244-47.

    Article  CAS  Google Scholar 

  49. [48] J.B. Lee and S.I. Yoon: Mater. Chem. Phys., 2010, vol. 122, pp. 194-99.

    Article  CAS  Google Scholar 

  50. [49] Z.G. Liu, X.H. Gao, L.X. Du, J.P. Li, Y. Kuang, and B.Wu: Appl. Surf. Sci., 2015, vol. 351, pp. 610-23.

    Article  CAS  Google Scholar 

  51. [50] P. Erazmus-Vignal, V. Vignal, S. Saedlou, and F. Krajcarz: Corros. Sci., 2015, vol. 99, pp. 194-204.

    Article  CAS  Google Scholar 

  52. [51] S.C. Zhang, H.B. Li, Z.H. Jiang, B.B. Zhang, Z.X. Li, J.X. Wu, S.P. Fan, H. Feng, and H.C. Zhu: Mater. Charact., 2019, vol. 152, pp. 141-50.

    Article  CAS  Google Scholar 

  53. [52] L. Mao, G.Y. Yuan, S.H. Wang, J.L. Niu, G.H. Wu, and W.J. Ding: Mater. Lett., 2012, vol. 88, pp. 1-4.

    Article  CAS  Google Scholar 

  54. [53] H.J. Kim, S.H. Jeon, S.T. Kim, I.S. Lee, Y.S. Park, K.T. Kim, and Y.S. Kim: Corros. Sci., 2014, vol. 87, pp. 60-70.

    Article  CAS  Google Scholar 

  55. [54] S.K. Bonagani, V. Bathula, and V. Kain: Corros. Sci., 2018, vol. 131, pp. 340-54.

    Article  CAS  Google Scholar 

  56. [55] S.N. Geng, J.S. Sun, L.Y. Guo, and H.Q. Wang: J. Manuf. Process., 2015, vol. 19, pp. 32-37.

    Article  Google Scholar 

  57. [56] C.O.A. Olsson, and D. Landolt: Electrochim. Acta, 2003, vol. 48, pp. 1093-1104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51571027) and the National Key R&D Program of China (No. 2016YFE0203600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 7, 2020; accepted February 13, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, W., Dong, B. et al. Effects of Microstructure and Material Composition on the Formation Kinetics of Passive Film and Pitting Behavior of Super 13Cr Stainless Steel. Metall Mater Trans A 52, 1985–1998 (2021). https://doi.org/10.1007/s11661-021-06208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06208-6

Navigation