Skip to main content
Log in

The electrochemical behaviour of nitrogen-containing austenitic stainless steel in methanolic solution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The corrosion behaviour of nitrogen-containing austenitic stainless steel in methanol containing different concentrations of H2SO4, HCl, LiCl and H2SO4 + HCl has been investigated using a potentiostatic polarization method. The cathodic reaction in the H2SO4, HCl and H2SO4 + HCl solutions was proton reduction whereas in the neutral LiCl solution, oxygen reduction was the predominant cathodic reaction. Active, passive and transpassive behaviours were observed only for higher concentrations of H2SO4 (0.01–2.0 M) due to the inherent water content. A cathodic loop, characterized by measured negative current in the anodic region, was also observed in solutions, in which the concentration of H2SO4 was 1.0 M or higher. The relative stability of the passive films decreased as the H2SO4 concentration increased, and thus the steel suffered from mild pitting corrosion. In the chloride environment, the rate of corrosion increased as the Cl ion concentration increased. The presence of acid along with Cl ions enhanced corrosion, and the corrosion rate increased significantly. The steel suffered from mild intergranular corrosion in acidic chloride solutions of methanol. In the H2SO4 + HCl solutions, passive films were only formed when the H2SO4 to HCl concentration ratio was greater than ∼10:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vanini AS, Audouard JP, Marcus P (1994) Corros Sci 36:1825

    Article  Google Scholar 

  2. Flis J, Kuczynska M (2004) J Electrochem Soc 151:B573

    Article  CAS  Google Scholar 

  3. Leckie HP, Uhlig HH (1966) J Electrochem Soc 113:1262

    Article  CAS  Google Scholar 

  4. Hermas AA, Ogura K, Takagi S, Adachi T (1995) Corrosion 51:3

    Article  CAS  Google Scholar 

  5. Bandy R, Van Rooyen D (1983) Corrosion 39:227

    Article  CAS  Google Scholar 

  6. Bayoumi FM, Ghanem WA (2005) Mater Lett 59:3311

    Article  CAS  Google Scholar 

  7. Mudali UK, Reynders B, Stratmann M (1999) Corros Sci 41:179

    Article  CAS  Google Scholar 

  8. Tsai WT, Reynders B, Stratmann M, Grabke HJ (1993) Corros Sci 34:1647

    Article  CAS  Google Scholar 

  9. Clayton CR, Halada P, Kearns R (1995) Mater Sci Eng A 198:135

    Article  Google Scholar 

  10. Pawlick LA, Kelly RG (1995) J Corros Sci Eng 1:15

    Google Scholar 

  11. Singh VB, Upadhyay BN (1998) Corros Sci 40:705

    Article  CAS  Google Scholar 

  12. Singh VK, Singh VB (1988) Corros Sci 28:385

    Article  CAS  Google Scholar 

  13. Singh VB, Gupta A (2005) Ind J Chem Tech 12:347

    CAS  Google Scholar 

  14. Keller P, Strehblow HH (2004) Corros Sci 46:1939

    Article  CAS  Google Scholar 

  15. Wilde BE, Hodge FG (1969) Electrochim Acta 14:619

    Article  CAS  Google Scholar 

  16. Rozenfeld IL (1981) Corrosion 37:371

    Article  Google Scholar 

  17. Greene ND (1960) J Electrochem Soc 107:4571

    Article  Google Scholar 

  18. Lee JW, Osseo-Asare K, Pickering HW (1985) J Electrochem Soc 132:550

    Article  CAS  Google Scholar 

  19. Frankenthal RP (1967) J Electrochem Soc 114:542

    Article  CAS  Google Scholar 

  20. Hermas AA, Ogura K, Adachi T (1995) Electrochim Acta 40:837

    Article  CAS  Google Scholar 

  21. Mazza F, Torchio S, Ghislandi N (1984) In: Proceedings of the 9th international congress on metallic corrosion, Toronto, vol. I, p 102

  22. Szklarska -Smialowska Z, Mankowski J (1982) Corros Sci 22:1105

    Article  CAS  Google Scholar 

  23. Umebayashi R, Akao N, Hara N, Sugimoto K (2003) J Electrochem Soc 150:B295

    Article  CAS  Google Scholar 

  24. Zhang YS, Zhu XM (1999) Corros Sci 41:1817

    Article  CAS  Google Scholar 

  25. Yang WP, Costa D, Marcus P (1994) J Electrochem Soc 141:2669

    Article  CAS  Google Scholar 

  26. Asami K, Hashimoto K, Musumoto T, Shimodaira S (1976) Corros Sci 16:909

    Article  CAS  Google Scholar 

  27. Clayton CR, Olefjord I (2002) In: Corrosion mechanism in theory and practice. Marcel Dekker, New York, p 217

    Chapter  Google Scholar 

  28. Mansfeld F (1973) J Electrochem Soc 120:188

    Article  CAS  Google Scholar 

  29. El-Naggar MM (2006) Applied Surf Sci R52:6179

    Article  Google Scholar 

  30. Szklarska-Smialowska Z (1984) In: Proceedings of the 9th international congress on metallic corrosion, Toronto, vol. II, p 112

  31. Tromans D, Ahmed T (1998) J Electrochem Soc 145:601

    Article  CAS  Google Scholar 

  32. Cerquetti A, Mazza F (1973) Corros Sci 13:337

    Article  CAS  Google Scholar 

  33. Badawy WA, Ismail KM, Fathi M (2005) Electrochim Acta 50:3603

    Article  CAS  Google Scholar 

  34. Pistorius PC, Burstein GT (1992) Corros Sci 33:1885

    Article  CAS  Google Scholar 

  35. Van Muylder J, Dezoubov N, Pourbaix M (1962) Report 101, CEBELCOR, Brussels, Belgium

  36. Ujiro T, Satoh S, Staehle RW, Smyrl WH (2001) Corros Sci 43:2185

    Article  CAS  Google Scholar 

  37. Ogura S, Sugimoto K, Sawada Y (1976) Corros Sci 16:323

    Article  CAS  Google Scholar 

  38. Singh DDN, Gaur B, Ghosh R, Singh BK (1998) NML Tech J 40:77

    CAS  Google Scholar 

  39. Carranza RM, Alvarez MG (1996) Corros Sci 38:909

    Article  CAS  Google Scholar 

  40. Barbucci A, Cerisola G, Cabot PL (2002) J Electrochem Soc 149:B534

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial assistance for this work from Council of Scientific and Industrial Research (CSIR), New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.B., Ray, M. The electrochemical behaviour of nitrogen-containing austenitic stainless steel in methanolic solution. J Mater Sci 42, 8279–8286 (2007). https://doi.org/10.1007/s10853-007-1644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1644-4

Keywords

Navigation