Skip to main content
Log in

Effect of Temperature and Concentration on the Corrosion Behavior of 42CrMoE Low Alloy Steel in Boric Acid Solution

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the corrosion behavior and mechanism of 42CrMoE LAS in boric acid solutions with varying concentrations (2500-37000 mg/l) and temperatures (25-97.5 °C) using electrochemical measurement and weight loss immersion experiment. Results revealed that at a low boric acid concentration, the corrosion rate initially increased and subsequently decreased with increasing temperature. While at higher concentrations, the corrosion rate exhibited a monotonic increase with increasing temperature. Additionally, the steel displayed pitting corrosion, which intensified with increasing boric acid concentrations. However, at high temperature, pits corrosion transformed toward uniform corrosion. The interrelated effects of temperature and boric acid concentration primarily modulated the pH and dissolved oxygen content, consequently impacting the corrosion behavior. With escalating temperature and concentration, corrosion products transformed from protective Fe2O3 and Fe3O4 to inadequately protective FeOOH, ultimately resulting in an increased corrosion rate of 42CrMoE LAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Tian, P. Zhizhen, and F. Yancheng, Boric Acid Corrosion in the Primary System of PWRs, in Materials Science and Advanced Technologies in Manufacturing II: Selected, Peer Reviewed Papers from the 4th International Conference on Materials Science and Engineering (ICMSE 2014), December 27–28, 2014, Jiujiang, Chinaed, 2014, p 58–62

  2. J. Park, O. Chopra, K. Natesan, W. Shack, and W. Cullen, Jr., Boric acid corrosion of light water reactor pressure vessel materials, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, 2005, pp 459–468

  3. S. Fyfitch and H. Xu, Boric acid Corrosion Laboratory Investigation of Carbon and Low-Alloy Steels in PWR Systems (2007)

  4. H.L. Dai, S.W. Shi, C. Guo, and X. Chen, Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid, Corros. Sci., 2020, 166, 108443.

    Article  CAS  Google Scholar 

  5. E. Hunt, Boric Acid Corrosion Guidebook, Revision 1: Managing Boric Acid Corrosion Issues at PWR Power Stations, EPRI Final Rep., 2001, 6, p 1000–975.

    Google Scholar 

  6. S.-W. Kim, D.-J. Kim, and H.-P. Kim, Evaluation of Galvanic Corrosion Behavior of Sa-508 Low Alloy Steel and Type 309l Stainless Steel Cladding of Reactor Pressure Vessel under Simulated Primary Water Environment, Nucl. Eng. Technol., 2012, 44(7), p 773–780.

    Article  CAS  Google Scholar 

  7. Q. Xiao, Z. Lu, J. Chen, M. Yao, Z. Chen, and A. Ejaz, The Effects of Temperature and Aeration on the Corrosion of A508III Low Alloy Steel in Boric Acid Solutions at 25–95 °C, J. Nucl. Mater., 2016, 480, p 88–99.

    Article  CAS  Google Scholar 

  8. Y.S. Lim, S.S. Hwang, D.J. Kim, and J.Y. Lee, Corrosion Behavior of SA508 Low Alloy Steels Exposed to Aerated Boric Acid Solutions, Nucl. Eng. Technol., 2020, 52(6), p 1222–1230.

    Article  CAS  Google Scholar 

  9. L. Wang, M. Wang, M. Zhong, X. Li, and Z. Cui, Degradation of Thermal Oxide Film on Pure Titanium in an Acidic Environment Containing Fluoride, npj Mater. Degrad., 2022, 6(1), p 65.

    Article  CAS  Google Scholar 

  10. Q. Zhu, J. Chen, G. Gou, H. Chen, and P. Li, Ameliorated Longitudinal Critically Refracted—Attenuation velocity method for Welding Residual Stress Measurement, J. Mater. Process. Technol., 2017, 246, p 267–275.

    Article  Google Scholar 

  11. J.X. Fang, S.Y. Dong, S.B. Li, Y.J. Wang, B.S. Xu, J. Li, B. Liu, and Y.L. Jiang, Direct Laser Deposition as Repair Technology for a Low Transformation Temperature Alloy: Microstructure, Residual Stress, and Properties, Mater. Sci. Eng. A, 2019, 748, p 119–127.

    Article  CAS  Google Scholar 

  12. Z.Y. Zhu, Y.L. Liu, G.Q. Gou, W. Gao, and J. Chen, Effect of Heat Input on Interfacial Characterization of the Butter Joint of Hot-Rolling CP-Ti/Q235 Bimetallic Sheets by Laser + CMT, Sci. Rep., 2021, 11(1), p 10020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Pan, L. Song, Z. Liu, J. Hu, and X. Li, Effect of Hydrogen Charging on SCC of 2205 Duplex Stainless Steel with Varying Microstructures in Simulated Deep-Sea Environment, Corros. Sci., 2022, 196, p 66.

    Article  Google Scholar 

  14. Y. Pan, B. Sun, Z. Liu, W. Wu, and X. Li, Hydrogen Effects on Passivation and SCC of 2205 DSS in Acidified Simulated Seawater, Corros. Sci., 2022, 208, p 66.

    Article  Google Scholar 

  15. W. Wu, Z. Liu, Q. Wang, and X. Li, Improving the Resistance of High-Strength Steel to SCC in a SO2-Polluted Marine Atmosphere through Nb and Sb Microalloying, Corros. Sci., 2020, 170, p 66.

    Article  Google Scholar 

  16. B. Sun, Y. Pan, J. Yang, J. Guo, B. Zhao, X. Liu, Z. Liu, and X. Li, Microstructure Evolution and SSCC Behavior of Strain-Strengthened 304 SS Pre-strained at Room Temperature and Cryogenic Temperature, Corros. Sci., 2023, 210, p 66.

    Article  Google Scholar 

  17. Y. Xiao, J. Tang, Y. Wang, B. Lin, Z. Nie, Y. and Li, B. Normand and H. Wang, Corrosion Behavior of 2205 Duplex Stainless Steel in NaCl Solutions Containing Sulfide Ions, Corros. Sci., 2022, 200, p 66.

    Article  Google Scholar 

  18. E. Huttunen-Saarivirta, E. Isotahdon, Z. Que, M. Lindgren, A. Mardoukhi, J.B. Jorcin, P. Mocnik, T. Kosec, Y.E. Ouazari, S.H. Mameng, and L. Wegrelius, Pitting Corrosion on Highly Alloyed Stainless Steels in Dilute Sulphuric Acid Containing Sodium Chloride, Electrochimica Acta, 2023, 457, p 66.

    Article  Google Scholar 

  19. T. Zhao, S. Wang, Z. Liu, C. Du, and X. Li, Effect of Cathodic Polarization on Stress Corrosion Cracking Behavior of a Ni(Fe, Al)-Maraging Steel in Artificial Seawater, Corros. Sci., 2021, 179, p 66.

    Article  Google Scholar 

  20. B.Z. Sun, Z.Y. Liu, Y.D. He, F.H. Cao, and X.G. Li, A New Study for Healing Pitting Defects of 316L Stainless Steel Based on Microarc Technology, Corros. Sci., 2021, 187, 109505.

    Article  CAS  Google Scholar 

  21. H. Tian, Z. Cui, H. Ma, P. Zhao, M. Yan, X. Wang, and H. Cui, Corrosion Evolution and Stress Corrosion Cracking Behavior of A Low Carbon Bainite Steel in the Marine Environments: Effect of the Marine Zones, Corros. Sci., 2022, 206, p 66.

    Article  Google Scholar 

  22. L. Wang, J. Liang, H. Li, L. Cheng, and Z. Cui, Quantitative Study of the Corrosion Evolution and Stress Corrosion Cracking of High Strength Aluminum Alloys in Solution and Thin Electrolyte Layer Containing Cl, Corros. Sci., 2021, 178, p 66.

    Article  Google Scholar 

  23. B. Sun, Q. Wang, Y. Pan, Z. Liu, C. Du, and X. Li, Understanding the Non-steady Electrochemical Mechanism on SCC of 304 SS under Applied Polarization Potentials, Corros. Sci., 2024, 227, p 66.

    Article  Google Scholar 

  24. Z. Li, B. Sun, Q. Liu, Y. Yu ,and Z. Liu, Fundamentally Understanding the Effect of Non-stable Cathodic Potential on Stress Corrosion Cracking of Pipeline Steel in Near-Neutral pH Solution, Constr. Build. Mater., 2021, 288, p 66.

    Article  Google Scholar 

  25. B. Sun, X. Zuo, X. Cheng, and X. Li, The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, npj Mater. Degrad., 2020, 4(1), p 66.

    Article  Google Scholar 

  26. X. Xu, H. Cheng, W. Wu, Z. Liu, and X. Li, Stress Corrosion Cracking Behavior and Mechanism of Fe-Mn-Al-C-Ni High Specific Strength Steel in the Marine Atmospheric Environment, Corros. Sci., 2021, 191, p 66.

    Article  Google Scholar 

  27. J. Soltis, Passivity Breakdown, Pit Initiation and Propagation of Pits in Metallic Materials—Review, Corros. Sci., 2015, 90, p 5–22.

    Article  CAS  Google Scholar 

  28. E. Mahdi, A. Rauf, and E.O. Eltai, Effect of Temperature and Erosion on Pitting Corrosion of X100 Steel in Aqueous Silica Slurries Containing Bicarbonate and Chloride Content, Corros. Sci., 2014, 83, p 48–58.

    Article  CAS  Google Scholar 

  29. S. Ahn, H. Kwon, and D.D. Macdonald, Role of Chloride Ion in Passivity Breakdown on Iron and Nickel, J. Electrochem. Soc., 2005, 152(11), p B482–B490.

    Article  Google Scholar 

  30. B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, and Z.H. Xu, Pitting and Stress Corrosion Cracking Behavior in Welded Austenitic Stainless Steel, Electrochim. Acta, 2005, 50(6), p 1391–1403.

    Article  CAS  Google Scholar 

  31. B. Meng, J. Wang, M. Chen, S. Zhu, and F. Wang, Study on the Oxidation Behavior of a Novel Thermal Barrier Coating System Using the Nanocrystalline Coating as Bonding Coating on the Single-Crystal Superalloy, Corros. Sci., 2023, 225, 111591.

    Article  CAS  Google Scholar 

  32. R. Kodým, D. Šnita, V. Fíla, K. Bouzek, and M. Kouřil, Investigation of Processes Occurring at Cathodically Protected Underground Installations: Mathematical Modeling of Reaction Transport Processes in Soil, Corros. Sci., 2017, 120, p 28–41.

    Article  Google Scholar 

  33. Y. Dou, S. Han, L. Wang, X. Wang, and Z. Cui, Characterization of the Passive Properties of 254SMO Stainless Steel in Simulated Desulfurized Flue Gas Condensates by Electrochemical Analysis, XPS and ToF-SIMS, Corrosion Science, 2020, 165, 108405.

    Article  CAS  Google Scholar 

  34. H. Huang, M. Huang, W. Zhang, S. Pospisil, and T. Wu, Experimental Investigation on Rehabilitation of Corroded RC Columns with BSP and HPFL under Combined Loadings, J. Struct. Eng., 2020, 146(8), p 04020157.

    Article  Google Scholar 

  35. Z. Zhang, Y. Han, X. Lu, T. Zhang, Y. Bai, and Q. Ma, Effects of N2 Content in Shielding Gas on Microstructure and Toughness of Cold Metal Transfer and Pulse Hybrid Welded Joint for Duplex Stainless Steel, Mater. Sci. Eng. A, 2023, 872, 144936.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Natural Science Foundation of China (No. U22B2065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, Y., Miao, X. et al. Effect of Temperature and Concentration on the Corrosion Behavior of 42CrMoE Low Alloy Steel in Boric Acid Solution. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09520-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09520-5

Keywords

Navigation