Skip to main content
Log in

Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid

  • Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Corrosion behavior and chemical structure of the passive film of a newly developed 200 series austenitic stainless steel (216L) were studied in sulfuric acid (H2SO4) and compared with 316L. From potentiodynamic polarization studies it was found that the corrosion behavior of 216L closely follows that of 316L. The breakdown of passivity was evaluated by addition of sodium chloride (NaCl). The immersion tests revealed that the corrosion rate of 216L in various concentrations of H2SO4 at ambient temperature is equivalent to 316L. X-ray photoelectron spectroscopy (XPS) analysis of the passive film formed on 216L revealed enrichment of Cr ions on the surface while Mo and N compounds were also present. Ni and Mn ions were conspicuous by their absence in the passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Metal Bulletin, World Steel & Metal News. No. 8978, 15 January 2007, p 15

  2. International Stainless Steel Forum (February 2008) E&S Bulletin. No 10 Shanghi, p 2

  3. Singhal LK (2005) Iron Steel Rev 4:68

    Google Scholar 

  4. Fourie JW, Bentley AP (1987) In: Proceedings of the conference on manganese containing stainless steels, Cincinnati, OH, October 1987, pp 10–15

  5. Ahila S, Reynders B, Grabke HJ (1996) Corros Sci 38:1991. doi:https://doi.org/10.1016/S0010-938X(96)00092-3

    Article  CAS  Google Scholar 

  6. Toor I-u-H, Park HJ, Kwon HS (2008) Corros Sci 50:404. doi:https://doi.org/10.1016/j.corsci.2007.07.004

    Article  CAS  Google Scholar 

  7. Sedriks AJ (1996) Corrosion of stainless steels. Wiley Inter science, New York

    Google Scholar 

  8. Chivinski JA (February 1972) Metal progress, 55

  9. Kearns JR (1985) In: Lula RA (ed) New development in stainless steel technology. ASM, Ohio, pp 117–128

    Google Scholar 

  10. Qiu JH (2002) Surf Interface Anal 33:830. doi:https://doi.org/10.1002/sia.1460

    Article  CAS  Google Scholar 

  11. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics, Minnesota, p 72

    Google Scholar 

  12. Grimal JM, Marcus P (1992) Corros Sci 33:805. doi:https://doi.org/10.1016/0010-938X(92)90113-H

    Article  Google Scholar 

  13. Stypula B, Stoch J (1994) Corros Sci 36:2159. doi:https://doi.org/10.1016/0010-938X(94)90014-0

    Article  CAS  Google Scholar 

  14. Beccaria AM, Castello G, Poggi G (1995) Br Corros J 30:283

    Article  CAS  Google Scholar 

  15. Latha G, Rajendran N, Rajeswari S (1997) J Mater Eng Perform 6:743. doi:https://doi.org/10.1007/s11665-997-0076-2

    Article  CAS  Google Scholar 

  16. Loechel BP, Strehblow HH (1984) J Electrochem Soc 131:713. doi:https://doi.org/10.1149/1.2115678

    Article  CAS  Google Scholar 

  17. Tetsuya T, Yoshimasa I, Yoshimtsu O (1997) Mater Trans JIM 38:78

    Article  Google Scholar 

  18. Nefedov VI, Salyn YV, Leonhardt G, Scheibe R (1977) J Electron Spectrosc Relat Phenom 10:121. doi:https://doi.org/10.1016/0368-2048(77)85010-X

    Article  CAS  Google Scholar 

  19. Sadough Vanini A, Audouard JP, Marcus P (1994) Corros Sci 36:1825. doi:https://doi.org/10.1016/0010-938X(94)90021-3

    Article  CAS  Google Scholar 

  20. Kovac CA, Clabes JG, Goldberg MJ (1988) Vac Sci Technol A 6:991. doi:https://doi.org/10.1116/1.575006

    Article  Google Scholar 

  21. Borgmann D, Hums E, Hopfengartner G, Wedler G, Spitznagel GW, Rademacher I (1993) J Electron Spectrosc Relat Phenom 63:91. doi:https://doi.org/10.1016/0368-2048(93)80042-K

    Article  Google Scholar 

  22. Olefjord I, Brox B, Jelvestam U (1985) J Electrochem Sci Tech (Paris) 132:2854

    Article  CAS  Google Scholar 

  23. Leygraf C, Hultquist G, Olefjord I, Elfstrom BO (1978) Corros Sci 19:343. doi:https://doi.org/10.1016/0010-938X(79)90026-X

    Article  Google Scholar 

  24. Werfel F, Brummer O (1983) Phys Scr 28:92. doi:https://doi.org/10.1088/0031-8949/28/1/013

    Article  CAS  Google Scholar 

  25. Dickinson T, Povey AF, Sherwood PMA (1976) J Chem Soc Faraday Trans I 72:686. doi:https://doi.org/10.1039/f19767200686

    Article  CAS  Google Scholar 

  26. Pashutski A, Folman M (1989) Surf Sci 216:395. doi:https://doi.org/10.1016/0039-6028(89)90383-X

    Article  CAS  Google Scholar 

  27. Mustin C, De Donato PH, Benoit R, Erre R (1993) Appl Surf Sci 68:147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shankar Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar Rao, V., Singhal, L.K. Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid. J Mater Sci 44, 2327–2333 (2009). https://doi.org/10.1007/s10853-008-2976-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2976-4

Keywords

Navigation