Skip to main content

Advertisement

Log in

Fracture risk prediction in old Chinese people—a narrative review

  • Review Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

With aging, the burden of osteoporotic fracture (OF) increases substantially, while China is expected to carry the greatest part in the future. The risk of fracture varies greatly across racial groups and geographic regions, and systematically organized evidence on the potential predictors for fracture risk is needed for Chinese. This review briefly introduces the epidemiology of OF and expands on the predictors and predictive tools for the risk of OF, as well as the challenges for their potential translation in the old Chinese population. There are regional differences of fracture incidence among China. The fracture incidences in Hong Kong and Taiwan have decreased in recent years, while it is still increasing in mainland China. Although the application of dual-energy X-ray absorptiometry (DXA) is limited among old Chinese in the mainland, bone mineral density (BMD) by DXA has a predictive value similar to that worldwide. Other non-DXA modalities, especially heel QUS, are helpful in assessing bone health. The fracture risk assessment tool (FRAX) has a good discrimination ability for OFs, especially the FRAX with BMD. And some clinical factors have added value to FRAX, which has been verified in old Chinese. In addition, although the application of the osteoporosis self-assessment tool for Asians (OSTA) in Chinese needs further validation, it may help identify high-risk populations in areas with limited resources. Moreover, the translation use of the muscle quality and genetic or serum biomarkers in fracture prediction needs further works. More applicable and targeted fracture risk predictors and tools are still needed for the old Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Kanis JA, Oden A, Johnell O et al (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12:417–427. https://doi.org/10.1007/s001980170112

    Article  CAS  PubMed  Google Scholar 

  2. Poole KE, Compston JE (2006) Osteoporosis and its management. BMJ 333:1251–1256. https://doi.org/10.1136/bmj.39050.597350.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adachi JD, Adami S, Gehlbach S et al (2010) Impact of prevalent fractures on quality of life: baseline results from the global longitudinal study of osteoporosis in women. Mayo Clin Proc 85:806–813. https://doi.org/10.4065/mcp.2010.0082

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bliuc D, Nguyen ND, Milch VE et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521. https://doi.org/10.1001/jama.2009.50

    Article  CAS  PubMed  Google Scholar 

  5. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(Suppl 2):S3–S7. https://doi.org/10.1007/s00198-004-1702-6

    Article  PubMed  Google Scholar 

  6. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. https://doi.org/10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  7. Wang YXJ (2022) Fragility fracture prevalence among elderly Chinese is no more than half of that of elderly Caucasians. Quant Imaging Med Surg 12:874–881. https://doi.org/10.21037/qims-21-876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooper C, Campion G, Melton LJ (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289

    Article  CAS  PubMed  Google Scholar 

  9. El-Hajj Fuleihan G, Chakhtoura M, Cauley JA, Chamoun N (2017) Worldwide fracture prediction. J Clin Densitom 20:397–424. https://doi.org/10.1016/j.jocd.2017.06.008

    Article  PubMed  Google Scholar 

  10. Cong E, Walker MD (2014) The Chinese skeleton: insights into microstructure that help to explain the epidemiology of fracture. Bone Res 2:14009. https://doi.org/10.1038/boneres.2014.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang FQ (2019) Status constraint and lifestyle transition: a latent class analysis of health-related lifestyles among different social strata in China. J Chin Sociol 6:23. https://doi.org/10.1186/s40711-019-0112-2

    Article  Google Scholar 

  12. Lin X, Xiong D, Peng YQ et al (2015) Epidemiology and management of osteoporosis in the People's Republic of China: current perspectives. Clin Interv Aging 10:1017–1033. https://doi.org/10.2147/CIA.S54613

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu F, Xia W (2019) The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch Osteoporos 14:32. https://doi.org/10.1007/s11657-018-0549-y

    Article  PubMed  Google Scholar 

  14. Lau EM, Cooper C (1993) Epidemiology and prevention of osteoporosis in urbanized Asian populations. Osteoporos Int 3(Suppl 1):23–26. https://doi.org/10.1007/BF01621856

    Article  PubMed  Google Scholar 

  15. Chau PH, Wong M, Lee A, Ling M, Woo J (2013) Trends in hip fracture incidence and mortality in Chinese population from Hong Kong 2001-09. Age Ageing 42:229–233. https://doi.org/10.1093/ageing/afs177

    Article  PubMed  Google Scholar 

  16. Bow CH, Cheung E, Cheung CL et al (2012) Ethnic difference of clinical vertebral fracture risk. Osteoporos Int 23:879–885. https://doi.org/10.1007/s00198-011-1627-9

    Article  CAS  PubMed  Google Scholar 

  17. Chen FP, Shyu YC, Fu TS et al (2017) Secular trends in incidence and recurrence rates of hip fracture: a nationwide population-based study. Osteoporos Int 28:811–818. https://doi.org/10.1007/s00198-016-3820-3

    Article  CAS  PubMed  Google Scholar 

  18. Cooper C, Cole ZA, Holroyd CR et al (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288. https://doi.org/10.1007/s00198-011-1601-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanis JA, Norton N, Harvey NC et al (2021) SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos 16: ARTN:82. https://doi.org/10.1007/s11657-020-00871-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang L, Cheng A, Bai Z et al (2000) Epidemiology of cervical and trochanteric fractures of the proximal femur in 1994 in Tangshan, China. J Bone Miner Metab 18:84–88. https://doi.org/10.1007/s007740050016

    Article  CAS  PubMed  Google Scholar 

  21. Tian FM, Zhang L, Zhao HY et al (2014) An increase in the incidence of hip fractures in Tangshan, China. Osteoporos Int 25:1321–1325. https://doi.org/10.1007/s00198-013-2600-6

    Article  PubMed  Google Scholar 

  22. Tian FM, Sun XX, Liu JY et al (2017) Unparallel gender-specific changes in the incidence of hip fractures in Tangshan. China. Arch Osteoporos 12:18. https://doi.org/10.1007/s11657-017-0313-8

    Article  PubMed  Google Scholar 

  23. Hou XL, Liu JY, Fan XH et al (2022) Secular trends of incidence and hospitalization cost of hip fracture in Tangshan, China. Osteoporos Int 33:89–96. https://doi.org/10.1007/s00198-021-06050-x

    Article  PubMed  Google Scholar 

  24. Chie WC, Yang RS, Liu JP, Tsai KS (2004) High incidence rate of hip fracture in Taiwan: estimated from a nationwide health insurance database. Osteoporos Int 15:998–1002. https://doi.org/10.1007/s00198-004-1651-0

    Article  CAS  PubMed  Google Scholar 

  25. Hayhoe RPG, Chan R, Skinner J et al (2021) Fracture incidence and the relevance of dietary and lifestyle factors differ in the United Kingdom and Hong Kong: an international comparison of longitudinal cohort study data. Calcif Tissue Int 109:563–576. https://doi.org/10.1007/s00223-021-00870-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gong XF, Li XP, Zhang LX et al (2021) Current status and distribution of hip fractures among older adults in China. Osteoporos Int 32:1785–1793. https://doi.org/10.1007/s00198-021-05849-y

    Article  CAS  PubMed  Google Scholar 

  27. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334. https://doi.org/10.1056/NEJMoa022464

    Article  PubMed  Google Scholar 

  28. De Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338. https://doi.org/10.1007/s00198-005-1863-y

    Article  PubMed  Google Scholar 

  29. Wainwright SA, Marshall LM, Ensrud KE et al (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793. https://doi.org/10.1210/jc.2004-1568

    Article  CAS  PubMed  Google Scholar 

  30. Lau EM, Suriwongpaisal P, Lee JK et al (2001) Risk factors for hip fracture in Asian men and women: the Asian osteoporosis study. J Bone Miner Res 16:572–580. https://doi.org/10.1359/jbmr.2001.16.3.572

    Article  CAS  PubMed  Google Scholar 

  31. Kung AW, Lee KK, Ho AY, Tang G, Luk KD (2007) Ten-year risk of osteoporotic fractures in postmenopausal Chinese women according to clinical risk factors and BMD T-scores: a prospective study. J Bone Miner Res 22:1080–1087. https://doi.org/10.1359/jbmr.070320

    Article  PubMed  Google Scholar 

  32. Lewis CE, Ewing SK, Taylor BC et al (2007) Predictors of non-spine fracture in elderly men: the MrOS study. J Bone Miner Res 22:211–219. https://doi.org/10.1359/jbmr.061017

    Article  PubMed  Google Scholar 

  33. NIH Consensus Development Panel on Osteoporosis Prevention D, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795. https://doi.org/10.1001/jama.285.6.785

    Article  Google Scholar 

  34. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18. https://doi.org/10.1007/s00198-002-1345-4

    Article  PubMed  Google Scholar 

  35. Trajanoska K, Morris JA, Oei L et al (2018) Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ 362:k3225. https://doi.org/10.1136/bmj.k3225

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42:467–475. https://doi.org/10.1016/j.bone.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  37. Chun KJ (2011) Bone densitometry. Semin Nucl Med 41:220–228. https://doi.org/10.1053/j.semnuclmed.2010.12.002

    Article  PubMed  Google Scholar 

  38. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259. https://doi.org/10.1136/bmj.312.7041.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leslie WD (2012) Clinical review: Ethnic differences in bone mass--clinical implications. J Clin Endocrinol Metab 97:4329–4340. https://doi.org/10.1210/jc.2012-2863

    Article  CAS  PubMed  Google Scholar 

  40. Tsang SW, Kung AW, Kanis JA, Johansson H, Oden A (2009) Ten-year fracture probability in Hong Kong Southern Chinese according to age and BMD femoral neck T-scores. Osteoporos Int 20:1939–1945. https://doi.org/10.1007/s00198-009-0906-1

    Article  CAS  PubMed  Google Scholar 

  41. Kwok TCY, Su Y, Khoo CC et al (2017) Predictors of non-vertebral fracture in older Chinese males and females: Mr. OS and Ms. OS (Hong Kong). J Bone Miner Metab 35:330–337. https://doi.org/10.1007/s00774-016-0761-z

    Article  PubMed  Google Scholar 

  42. Kung AW, Luk KD, Chu LW, Tang GW (1999) Quantitative ultrasound and symptomatic vertebral fracture risk in Chinese women. Osteoporos Int 10:456–461. https://doi.org/10.1007/s001980050254

    Article  CAS  PubMed  Google Scholar 

  43. Ling X, Cummings SR, Mingwei Q et al (2000) Vertebral fractures in Beijing, China: the Beijing Osteoporosis Project. J Bone Miner Res 15:2019–2025. https://doi.org/10.1359/jbmr.2000.15.10.2019

    Article  CAS  PubMed  Google Scholar 

  44. Tsang SWY, Bow CH, Chu EYW et al (2011) Clinical risk factor assessment had better discriminative ability than bone mineral density in identifying subjects with vertebral fracture. Osteoporos Int 22:667–674. https://doi.org/10.1007/s00198-010-1260-z

    Article  CAS  PubMed  Google Scholar 

  45. Cui L, Chen L, Xia W et al (2017) Vertebral fracture in postmenopausal Chinese women: a population-based study. Osteoporos Int 28:2583–2590. https://doi.org/10.1007/s00198-017-4085-1

    Article  CAS  PubMed  Google Scholar 

  46. Kwok T, Khoo CC, Leung J et al (2012) Predictive values of calcaneal quantitative ultrasound and dual energy X ray absorptiometry for non-vertebral fracture in older men: results from the MrOS study (Hong Kong). Osteoporos Int 23:1001–1006. https://doi.org/10.1007/s00198-011-1634-x

    Article  CAS  PubMed  Google Scholar 

  47. Li GW, Chang SX, Xu Z et al (2013) Prediction of hip osteoporotic fractures from composite indices of femoral neck strength. Skeletal Radiol 42:195–201. https://doi.org/10.1007/s00256-012-1473-7

    Article  PubMed  Google Scholar 

  48. Bow CH, Tsang SW, Loong CH et al (2011) Bone mineral density enhances use of clinical risk factors in predicting ten-year risk of osteoporotic fractures in Chinese men: the Hong Kong Osteoporosis Study. Osteoporos Int 22:2799–2807. https://doi.org/10.1007/s00198-010-1490-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shin MH, Zmuda JM, Barrett-Connor E et al (2014) Race/ethnic differences in associations between bone mineral density and fracture history in older men. Osteoporos Int 25:837–845. https://doi.org/10.1007/s00198-013-2503-6

    Article  PubMed  Google Scholar 

  50. Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954. https://doi.org/10.1359/jbmr.2003.18.11.1947

    Article  PubMed  Google Scholar 

  51. Kanis JA, McCloskey EV, Harvey NC, Johansson H, Leslie WD (2015) Intervention thresholds and the diagnosis of osteoporosis. J Bone Miner Res 30:1747–1753. https://doi.org/10.1002/jbmr.2531

    Article  PubMed  Google Scholar 

  52. Su Y (2018) Fracture prediction in older Chinese People: the Mr. Dissertation, The Chinese University of Hong Kong, OS and Ms. OS cohort study in Hong Kong

    Google Scholar 

  53. Wu XP, Hou YL, Zhang H et al (2008) Establishment of BMD reference databases for the diagnosis and evaluation of osteoporosis in central southern Chinese men. J Bone Miner Metab 26:586–594. https://doi.org/10.1007/s00774-008-0877-x

    Article  PubMed  Google Scholar 

  54. Cheng XG, Yang DZ, Zhou Q et al (2007) Age-related bone mineral density, bone loss rate, prevalence of osteoporosis, and reference database of women at multiple centers in China. J Clin Densitom 10:276–284. https://doi.org/10.1016/j.jocd.2007.05.004

    Article  PubMed  Google Scholar 

  55. Lynn HS, Lau EM, Au B, Leung PC (2005) Bone mineral density reference norms for Hong Kong Chinese. Osteoporos Int 16:1663–1668. https://doi.org/10.1007/s00198-005-1899-z

    Article  CAS  PubMed  Google Scholar 

  56. Yeh LR, Chen CK, Lai PH (2004) Normal bone mineral density in anteroposterior, lateral spine and hip of Chinese men in Taiwan: effect of age change, body weight and height. J Chin Med Assoc 67:287–295

    PubMed  Google Scholar 

  57. Li N, Ou P, Zhu H, Yang D, Zheng P (2002) Prevalence rate of osteoporosis in the mid - aged and elderly in selected parts of China. Chin Med J (Engl) 115:773–775

    PubMed  Google Scholar 

  58. Kanis JA, Johansson H, Oden A et al (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35:1029–1037. https://doi.org/10.1016/j.bone.2004.06.017

    Article  CAS  PubMed  Google Scholar 

  59. Lau EM, Chung HL, Ha PC, Tang H, Lam D (2015) Bone mineral density, anthropometric indices, and the prevalence of osteoporosis in northern (Beijing) Chinese and southern (Hong Kong) Chinese women--the largest comparative study to date. J Clin Densitom 18:519–524. https://doi.org/10.1016/j.jocd.2014.11.001

    Article  PubMed  Google Scholar 

  60. Cui ZY, Meng XY, Feng H et al (2020) Estimation and projection about the standardized prevalence of osteoporosis in mainland China. Arch Osteoporos 15. https://doi.org/10.1007/s11657-019-0670-6

  61. Wright NC, Looker AC, Saag KG et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  Google Scholar 

  62. Willers C, Norton N, Harvey NC et al (2022) Osteoporosis in Europe: a compendium of country-specific reports. Arch Osteoporos 17:ARTN:23. https://doi.org/10.1007/s11657-021-00969-8

    Article  PubMed  PubMed Central  Google Scholar 

  63. Su Y, Leung J, Hans D, Aubry-Rozier B, Kwok T (2017) Added clinical use of trabecular bone score to BMD for major osteoporotic fracture prediction in older Chinese people: the Mr. OS and Ms. OS cohort study in Hong Kong. Osteoporos Int 28:151–160. https://doi.org/10.1007/s00198-016-3785-2

    Article  CAS  PubMed  Google Scholar 

  64. Wang YXJ (2023) Estimation of osteoporosis prevalence among a population is reasonable only after the concerned reference bone mineral density database and cutpoint T-score have been validated. Osteoporos Int 34:417–418. https://doi.org/10.1007/s00198-022-06538-0

    Article  CAS  PubMed  Google Scholar 

  65. Wang YXJ, Xiao BH (2022) Estimations of bone mineral density defined osteoporosis prevalence and cutpoint T-score for defining osteoporosis among older Chinese population: a framework based on relative fragility fracture risks. Quant Imaging Med Surg. https://doi.org/10.21037/qims-22-281

  66. Kanis JA, Johnell O, Oden A et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162. https://doi.org/10.1007/s00198-004-1640-3

    Article  CAS  PubMed  Google Scholar 

  67. Cheung EY, Bow CH, Cheung CL et al (2012) Discriminative value of FRAX for fracture prediction in a cohort of Chinese postmenopausal women. Osteoporos Int 23:871–878. https://doi.org/10.1007/s00198-011-1647-5

    Article  CAS  PubMed  Google Scholar 

  68. Lin J, Yang Y, Fei Q et al (2016) Validation of three tools for identifying painful new osteoporotic vertebral fractures in older Chinese men: bone mineral density, Osteoporosis Self-Assessment Tool for Asians, and fracture risk assessment tool. Clin Interv Aging 11:461–469. https://doi.org/10.2147/CIA.S101078

    Article  PubMed  PubMed Central  Google Scholar 

  69. Huang ML, Hung VWY, Li TK et al (2021) Performance of HR-pQCT, DXA, and FRAX in the discrimination of asymptomatic vertebral fracture in postmenopausal Chinese women. Arch Osteoporos 16:ARTN:125. https://doi.org/10.1007/s11657-021-00939-0

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fan JX, Li N, Gong XF, He L (2018) Serum 25-hydroxyvitamin D, bone turnover markers and bone mineral density in postmenopausal women with hip fractures. Clin Chim Acta 477:135–140. https://doi.org/10.1016/j.cca.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  71. Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046. https://doi.org/10.1007/s00198-007-0343-y

    Article  CAS  PubMed  Google Scholar 

  72. Hans D, Barthe N, Boutroy S et al (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312. https://doi.org/10.1016/j.jocd.2011.05.005

    Article  PubMed  Google Scholar 

  73. Silva BC, Walker MD, Abraham A et al (2013) Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and white women. J Clin Densitom 16:554–561. https://doi.org/10.1016/j.jocd.2013.07.001

    Article  PubMed  Google Scholar 

  74. McCloskey EV, Oden A, Harvey NC et al (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31:940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  75. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26:2762–2769. https://doi.org/10.1002/jbmr.499

    Article  PubMed  Google Scholar 

  76. Su Y, Leung J, Hans D, Lamy O, Kwok T (2017) The added value of trabecular bone score to FRAX(R) to predict major osteoporotic fractures for clinical use in Chinese older people: the Mr. OS and Ms. OS cohort study in Hong Kong. Osteoporos Int 28:111–117. https://doi.org/10.1007/s00198-016-3741-1

    Article  CAS  PubMed  Google Scholar 

  77. Popp AW, Guler S, Lamy O et al (2013) Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone Miner Res 28:449–454. https://doi.org/10.1002/jbmr.1775

    Article  CAS  PubMed  Google Scholar 

  78. Krieg MA, Aubry-Rozier B, Hans D, Leslie WD (2013) Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int 24:1073–1078. https://doi.org/10.1007/s00198-012-2155-y

    Article  CAS  PubMed  Google Scholar 

  79. Cheung EYN, Tan KCB, Cheung CL, Kung AWC (2016) Osteoporosis in East Asia: current issues in assessment and management. Osteoporos Sarcopenia 2:118–133. https://doi.org/10.1016/j.afos.2016.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  80. Krieg MA, Barkmann R, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11:163–187. https://doi.org/10.1016/j.jocd.2007.12.011

    Article  PubMed  Google Scholar 

  81. Yung PS, Lai YM, Tung PY et al (2005) Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br J Sports Med 39:547–551. https://doi.org/10.1136/bjsm.2004.014621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McCloskey EV, Kanis JA, Odén A et al (2015) Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int 26:1979–1987. https://doi.org/10.1007/s00198-015-3072-7

    Article  CAS  PubMed  Google Scholar 

  83. He YQ, Fan B, Hans D et al (2000) Assessment of a new quantitative ultrasound calcaneus measurement: precision and discrimination of hip fractures in elderly women compared with dual X-ray absorptiometry. Osteoporos Int 11:354–360. https://doi.org/10.1007/s001980070125

    Article  CAS  PubMed  Google Scholar 

  84. Hollaender R, Hartl F, Krieg MA et al (2009) Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study. Ann Rheum Dis 68:391–396. https://doi.org/10.1136/ard.2007.083618

    Article  CAS  PubMed  Google Scholar 

  85. Hans D, Baim S (2017) Quantitative ultrasound (QUS) in the management of osteoporosis and assessment of fracture risk. J Clin Densitom 20:322–333. https://doi.org/10.1016/j.jocd.2017.06.018

    Article  PubMed  Google Scholar 

  86. Díez-Pérez A, González-Macías J, Marín F et al (2007) Prediction of absolute risk of non-spinal fractures using clinical risk factors and heel quantitative ultrasound. Osteoporos Int 18:629–639. https://doi.org/10.1007/s00198-006-0297-5

    Article  PubMed  Google Scholar 

  87. Hans D, Durosier C, Kanis JA et al (2008) Assessment of the 10-year probability of osteoporotic hip fracture combining clinical risk factors and heel bone ultrasound: the EPISEM prospective cohort of 12,958 elderly women. J Bone Miner Res 23:1045–1051. https://doi.org/10.1359/Jbmr.080229

    Article  PubMed  Google Scholar 

  88. Su Y, Lai FTT, Yip BHK, Leung JCS, Kwok TCY (2018) Cost-effectiveness of osteoporosis screening strategies for hip fracture prevention in older Chinese people: a decision tree modeling study in the Mr. OS and Ms. OS cohort in Hong Kong. Osteoporos Int 29:1793–1805. https://doi.org/10.1007/s00198-018-4543-4

    Article  CAS  PubMed  Google Scholar 

  89. Thomsen K, Jepsen DB, Matzen L et al (2015) Is calcaneal quantitative ultrasound useful as a prescreen stratification tool for osteoporosis? Osteoporos Int 26:1459–1475. https://doi.org/10.1007/s00198-014-3012-y

    Article  CAS  PubMed  Google Scholar 

  90. Samelson EJ, Broe KE, Xu H et al (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7:34–43. https://doi.org/10.1016/S2213-8587(18)30308-5

    Article  PubMed  Google Scholar 

  91. Leonhardt Y, May P, Gordijenko O et al (2020) Opportunistic QCT bone mineral density measurements predicting osteoporotic fractures: a use case in a prospective clinical cohort. Front Endocrinol (Lausanne) 11:586352. https://doi.org/10.3389/fendo.2020.586352

    Article  PubMed  Google Scholar 

  92. Cheng X, Zhao K, Zha X et al (2021) Opportunistic screening using low-dose CT and the prevalence of osteoporosis in China: a nationwide, multicenter study. J Bone Miner Res 36:427–435. https://doi.org/10.1002/jbmr.4187

    Article  CAS  PubMed  Google Scholar 

  93. Kanis JA, Oden A, McCloskey EV et al (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239–2256. https://doi.org/10.1007/s00198-012-1964-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  95. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444. https://doi.org/10.1007/s00198-008-0588-0

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen TV, Center JR, Eisman JA (2013) Individualized fracture risk assessment: progresses and challenges. Curr Opin Rheumatol 25:532–541. https://doi.org/10.1097/BOR.0b013e328361ff8c

    Article  PubMed  Google Scholar 

  98. Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339:b4229. https://doi.org/10.1136/bmj.b4229

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hippisley-Cox J, Coupland C (2012) Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ 344:e3427. https://doi.org/10.1136/bmj.e3427

    Article  PubMed  Google Scholar 

  100. Kanis JA, Johnell O, De Laet C et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382. https://doi.org/10.1016/j.bone.2004.03.024

    Article  CAS  PubMed  Google Scholar 

  101. Kanis JA, Johansson H, Oden A et al (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–899. https://doi.org/10.1359/JBMR.040134

    Article  PubMed  Google Scholar 

  102. Kanis JA, Johansson H, Johnell O et al (2005) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742. https://doi.org/10.1007/s00198-004-1734-y

    Article  PubMed  Google Scholar 

  103. Vandenput L, Johansson H, McCloskey EV et al (2022) Update of the fracture risk prediction tool FRAX: a systematic review of potential cohorts and analysis plan. Osteoporos Int 33:2103–2136. https://doi.org/10.1007/s00198-022-06435-6

    Article  CAS  PubMed  Google Scholar 

  104. Hwang JS, Chan DC, Chen JF et al (2014) Clinical practice guidelines for the prevention and treatment of osteoporosis in Taiwan: summary. J Bone Miner Metab 32:10–16. https://doi.org/10.1007/s00774-013-0495-0

    Article  PubMed  Google Scholar 

  105. Kanis JA, Harvey NC, Cooper C et al (2016) A systematic review of intervention thresholds based on FRAX : a report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos 11:25. https://doi.org/10.1007/s11657-016-0278-z

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schwartz AV, Vittinghoff E, Bauer DC et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192. https://doi.org/10.1001/jama.2011.715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ettinger B, Liu H, Blackwell T et al (2012) Validation of FRC, a fracture risk assessment tool, in a cohort of older men: the Osteoporotic Fractures in Men (MrOS) Study. J Clin Densitom 15:334–342. https://doi.org/10.1016/j.jocd.2012.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  108. Orwoll ES, Lapidus J, Wang PY et al (2017) The limited clinical utility of testosterone, estradiol, and sex hormone binding globulin measurements in the prediction of fracture risk and bone loss in older men. J Bone Miner Res 32:633–640. https://doi.org/10.1002/jbmr.3021

    Article  CAS  PubMed  Google Scholar 

  109. Wang J, Wang X, Fang Z, Lu N, Han L (2017) The effect of FRAX on the prediction of osteoporotic fractures in urban middle-aged and elderly healthy Chinese adults. Clinics (Sao Paulo) 72:289–293. https://doi.org/10.6061/clinics/2017(05)06

    Article  PubMed  Google Scholar 

  110. Marques A, Ferreira RJO, Santos E et al (2015) The accuracy of osteoporotic fracture risk prediction tools: a systematic review and meta-analysis. Ann Rheum Dis 74:1958–1967. https://doi.org/10.1136/annrheumdis-2015-207907

    Article  PubMed  Google Scholar 

  111. Beaudoin C, Moore L, Gagne M et al (2019) Performance of predictive tools to identify individuals at risk of non-traumatic fracture: a systematic review, meta-analysis, and meta-regression. Osteoporos Int 30:721–740. https://doi.org/10.1007/s00198-019-04919-6

    Article  CAS  PubMed  Google Scholar 

  112. Liu IT, Liang F-W, Li C-C et al (2022) Validation of the Taiwan FRAX® calculator for the prediction of fracture risk. Arch Osteoporos 17. https://doi.org/10.1007/s11657-022-01068-y

  113. Liu IT, Liang FW, Wang ST et al (2021) The effects of falls on the prediction of osteoporotic fractures: epidemiological cohort study. Arch Osteoporos 16: ARTN:110. https://doi.org/10.1007/s11657-021-00977-8

    Article  CAS  PubMed  Google Scholar 

  114. Su Y, Leung J, Kwok T (2018) The role of previous falls in major osteoporotic fracture prediction in conjunction with FRAX in older Chinese men and women: the Mr. OS and Ms. OS cohort study in Hong Kong. Osteoporos Int 29:355–363. https://doi.org/10.1007/s00198-017-4277-8

    Article  CAS  PubMed  Google Scholar 

  115. Fan Z, Li X, Zhang X et al (2020) Comparison of OSTA, FRAX and BMI for predicting postmenopausal osteoporosis in a Han population in Beijing: a cross sectional study. Clin Interv Aging 15:1171–1180. https://doi.org/10.2147/CIA.S257166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu R, Leung J, Woo J (2014) Sarcopenia combined with FRAX probabilities improves fracture risk prediction in older Chinese men. J Am Med Dir Assoc 15:918–923. https://doi.org/10.1016/j.jamda.2014.07.011

    Article  PubMed  Google Scholar 

  117. Chen SJ, Chen YJ, Cheng CH (2016) Comparisons of different screening tools for identifying fracture/osteoporosis risk among community-dwelling older people (vol 95, e3415, 2016). Medicine 95: ARTN:e0553. https://doi.org/10.1097/01.md.0000494748.75305.53

    Article  Google Scholar 

  118. Zhang ZM, Ou YN, Sheng ZF, Liao EY (2014) How to decide intervention thresholds based on FRAX in central south Chinese postmenopausal women. Endocrine 45:195–197. https://doi.org/10.1007/s12020-013-0076-y

    Article  CAS  PubMed  Google Scholar 

  119. Cheung E, Cheung CL, Kung AW, Tan KC (2014) Possible FRAX-based intervention thresholds for a cohort of Chinese postmenopausal women. Osteoporos Int 25:1017–1023. https://doi.org/10.1007/s00198-013-2553-9

    Article  CAS  PubMed  Google Scholar 

  120. Chandran M, McCloskey EV, Thu WPP et al (2018) FRAX® based intervention thresholds for management of osteoporosis in Singaporean women. Arch Osteoporos 13. https://doi.org/10.1007/s11657-018-0542-5

  121. Liu SY, Huang M, Chen R et al (2019) Comparison of strategies for setting intervention thresholds for Chinese postmenopausal women using the FRAX model. Endocrine 65:200–206. https://doi.org/10.1007/s12020-019-01951-8

    Article  CAS  PubMed  Google Scholar 

  122. Cui L, He T, Jiang Y et al (2020) Predicting the intervention threshold for initiating osteoporosis treatment among postmenopausal women in China: a cost-effectiveness analysis based on real-world data. Osteoporos Int 31:307–316. https://doi.org/10.1007/s00198-019-05173-6

    Article  CAS  PubMed  Google Scholar 

  123. Li Y, Yang J, Xuan M, Ji P, Zhang X (2016) Assessment of fracture risk by FRAX model in older adults with type 2 diabetes: a cross-sectional study in China. Int J Clin Exp Med 9:20432–20438

    Google Scholar 

  124. Su Y, Lam FMH, Leung J et al (2020) The predictive value of sarcopenia and falls for 2-year major osteoporotic fractures in community-dwelling older adults. Calcif Tissue Int 107:151–159. https://doi.org/10.1007/s00223-020-00709-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Su Y, Woo JW, Kwok TCY (2019) The added value of SARC-F to prescreening using FRAX for hip fracture prevention in older community adults. J Am Med Dir Assoc 20:83–89. https://doi.org/10.1016/j.jamda.2018.08.007

    Article  PubMed  Google Scholar 

  126. Edwards MH, Jameson K, Denison H et al (2013) Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone 52:541–547. https://doi.org/10.1016/j.bone.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  127. Koh LK, Sedrine WB, Torralba TP et al (2001) A simple tool to identify asian women at increased risk of osteoporosis. Osteoporos Int 12:699–705. https://doi.org/10.1007/s001980170070

    Article  CAS  PubMed  Google Scholar 

  128. Kung AWC, Ho AYY, Ross PD, Reginster JY (2005) Development of a clinical assessment tool in identifying Asian men with low bone mineral density and comparison of its usefulness to quantitative bone ultrasound. Osteoporos Int 16:849–855. https://doi.org/10.1007/s00198-004-1778-z

    Article  PubMed  Google Scholar 

  129. Zha XY, Hu Y, Pang XN, Chang GL, Li L (2015) Diagnostic value of osteoporosis self-assessment tool for Asians (OSTA) and quantitative bone ultrasound (QUS) in detecting high-risk populations for osteoporosis among elderly Chinese men. J Bone Miner Metab 33:230–238. https://doi.org/10.1007/s00774-014-0587-5

    Article  PubMed  Google Scholar 

  130. Zhang XD, Lin JS, Yang Y et al (2018) Comparison of three tools for predicting primary osteoporosis in an elderly male population in Beijing: a cross-sectional study. Clin Interv Aging 13:201–209. https://doi.org/10.2147/Cia.S145741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kung AW, Ho AY, Sedrine WB, Reginster JY, Ross PD (2003) Comparison of a simple clinical risk index and quantitative bone ultrasound for identifying women at increased risk of osteoporosis. Osteoporos Int 14:716–721. https://doi.org/10.1007/s00198-003-1428-x

    Article  PubMed  Google Scholar 

  132. Ang SB, Xia JY, Cheng SJ et al (2022) A pilot screening study for low bone mass in Singaporean women using years since menopause and BMI. Climacteric 25:163–169. https://doi.org/10.1080/13697137.2021.1908989

    Article  CAS  PubMed  Google Scholar 

  133. An N, Lin JS, Fei Q (2021) Beijing Friendship Hospital Osteoporosis Self-Assessment Tool for Elderly Male (BFH-OSTM) vs Fracture Risk Assessment Tool (FRAX) for identifying painful new osteoporotic vertebral fractures in older Chinese men: a cross-sectional study. BMC Musculoskelet Disord 22:596. https://doi.org/10.1186/s12891-021-04476-2

    Article  PubMed  PubMed Central  Google Scholar 

  134. Guo S, An N, Lin J et al (2022) Comparison of four tools to identify painful new osteoporotic vertebral fractures in the postmenopausal population in Beijing. Front Endocrinol (Lausanne) 13:1013755. https://doi.org/10.3389/fendo.2022.1013755

    Article  PubMed  Google Scholar 

  135. Tao B, Liu JM, Li XY et al (2008) An assessment of the use of quantitative ultrasound and the Osteoporosis Self-Assessment Tool for Asians in determining the risk of nonvertebral fracture in postmenopausal Chinese women. J Bone Miner Metab 26:60–65. https://doi.org/10.1007/s00774-007-0798-0

    Article  PubMed  Google Scholar 

  136. Zhang Y, Hao Q, Ge M, Dong B (2018) Association of sarcopenia and fractures in community-dwelling older adults: a systematic review and meta-analysis of cohort studies. Osteoporos Int 29:1253–1262. https://doi.org/10.1007/s00198-018-4429-5

    Article  CAS  PubMed  Google Scholar 

  137. Frisoli A Jr, Martin FG, Carvalho ACC et al (2018) Sex effects on the association between sarcopenia EWGSOP and osteoporosis in outpatient older adults: data from the SARCOS study. Arch. Endocrinol Metab 62:615–622. https://doi.org/10.20945/2359-3997000000087

    Article  Google Scholar 

  138. Hars M, Biver E, Chevalley T et al (2016) Low lean mass predicts incident fractures independently from FRAX: a prospective cohort study of recent retirees. J Bone Miner Res 31:2048–2056. https://doi.org/10.1002/jbmr.2878

    Article  CAS  PubMed  Google Scholar 

  139. Harvey NC, Oden A, Orwoll E et al (2018) Measures of physical performance and muscle strength as predictors of fracture risk independent of FRAX, falls, and aBMD: a meta-analysis of the osteoporotic fractures in men (MrOS) Study. J Bone Miner Res 33:2150–2157. https://doi.org/10.1002/jbmr.3556

    Article  PubMed  Google Scholar 

  140. McLean RR, Kiel DP, Berry SD et al (2018) Lower lean mass measured by dual-energy X-ray absorptiometry (DXA) is not associated with increased risk of hip fracture in women: the Framingham osteoporosis study. Calcif Tissue Int 103:16–23. https://doi.org/10.1007/s00223-017-0384-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schott AM, Cormier C, Hans D et al (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int 8:247–254. https://doi.org/10.1007/s001980050061

    Article  CAS  PubMed  Google Scholar 

  142. Dai Z, Ang LW, Yuan JM, Koh WP (2015) Association between change in body weight after midlife and risk of hip fracture-the Singapore Chinese Health Study. Osteoporos Int 26:1939–1947. https://doi.org/10.1007/s00198-015-3099-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. WA P (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650. https://doi.org/10.1016/0002-9343(93)90218-e

    Article  Google Scholar 

  144. Saito D, Mikami T, Oda Y et al (2016) Relationships among maxillofacial morphologies, bone properties, and bone metabolic markers in patients with jaw deformities. Int J Oral Maxillofac Surg 45:985–991. https://doi.org/10.1016/j.ijom.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  145. Su Y, Elshorbagy A, Turner C et al (2019) Circulating amino acids are associated with bone mineral density decline and ten-year major osteoporotic fracture risk in older community-dwelling adults. Bone 129:115082. https://doi.org/10.1016/j.bone.2019.115082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hong X, Hsu YH, Terwedow H et al (2007) Association of the methylenetetrahydrofolate reductase C677T polymorphism and fracture risk in Chinese postmenopausal women. Bone 40:737–742. https://doi.org/10.1016/j.bone.2006.09.031

    Article  CAS  PubMed  Google Scholar 

  147. Wang J, Shu B, Li CG et al (2019) Polymorphisms of genes related to vitamin D metabolism and transportation and its relationship with the risk of osteoporosis: protocol for a multicentre prospective cohort study in China. BMJ Open 9:e028084. https://doi.org/10.1136/bmjopen-2018-028084

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yang S, Liu Y, Shi Q, Zou J, Yang H (2018) Characteristics of bone biochemical indices in predicting secondary osteoporotic fracture after intertrochanteric fracture in elderly women. J Orthop Translat 12:1–5. https://doi.org/10.1016/j.jot.2017.07.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Science and Technology Program of Hunan Province, China (grant number No. 2022RC1207), the National Institutes of Health R01 grant (grant number AR049439–01A1), and the Research Grants Council Earmarked grant (grant number CUHK4101/02 M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Kwok.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhou, B. & Kwok, T. Fracture risk prediction in old Chinese people—a narrative review. Arch Osteoporos 19, 3 (2024). https://doi.org/10.1007/s11657-023-01360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-023-01360-5

Keywords

Navigation