Skip to main content

Advertisement

Log in

Discriminative value of FRAX for fracture prediction in a cohort of Chinese postmenopausal women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We followed 2,266 postmenopausal Chinese women for 4.5 years to determine which model best predicts osteoporotic fracture. A model that contains ethnic-specific risk factors, some of which reflect frailty, performed as well as or better than the well-established FRAX model.

Introduction

Clinical risk assessment, with or without T-score, can predict fractures in Chinese postmenopausal women although it is unknown which combination of clinical risk factors is most effective. This prospective study sought to compare the accuracy for fracture prediction using various models including FRAX, our ethnic-specific clinical risk factors (CRF) and other simple models.

Methods

This study is part of the Hong Kong Osteoporosis Study. A total of 2,266 treatment naïve postmenopausal women underwent clinical risk factor and bone mineral density assessment. Subjects were followed up for outcome of major osteoporotic fracture and receiver operating characteristic (ROC) curves for different models were compared. The percentage of subjects in different quartiles of risk according to various models who actually fractured was also compared.

Results

The mean age at baseline was 62.1 ± 8.5 years and mean follow-up time was 4.5 ± 2.8 years. A total of 106 new major osteoporotic fractures were reported, of which 21 were hip fractures. Ethnic-specific CRF with T-score performed better than FRAX with T-score (based on both Chinese normative and National Health and Nutrition Examination Survey (NHANES) databases) in terms of AUC comparison for prediction of major osteoporotic fracture. The two models were similar in hip fracture prediction. The ethnic-specific CRF model had a 10% higher sensitivity than FRAX at a specificity of 0.8 or above.

Conclusion

CRF related to frailty and differences in lifestyle between populations are likely to be important in fracture prediction. Further work is required to determine which and how CRF can be applied to develop a fracture prediction model in our population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ioannidis G, Papaioannou A, Hopman WM, Noori A-D, Tassos A, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Amiran G, Papadimitropoulos E, Brown J, Josse R, Hanley D, Adachi JD (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ1 81:265–270

    Article  Google Scholar 

  2. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    Article  PubMed  CAS  Google Scholar 

  3. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  4. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR, Osteoporotic Fractures Research Group (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  5. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES, Study of Osteoporotic Fractures Research Group Study of Osteoporotic Fractures Research Group (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793

    Article  PubMed  CAS  Google Scholar 

  6. Kanis JA, Johnell O, Oden A, De Laet C, Jonsson B, Dawson A (2002) Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone 30:251–258

    Article  PubMed  CAS  Google Scholar 

  7. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18:1109–1117

    Article  PubMed  CAS  Google Scholar 

  8. Trémollieres FA, Pouillès JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P (2010) Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res May 25(5):1002–1009

    Article  Google Scholar 

  9. Cooper C, Melton LJ (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289

    Article  PubMed  CAS  Google Scholar 

  10. Colón-Emeric CS, Lyles KW (2009) Should there be a fracas over FRAX and other fracture prediction tools?: Comment on “A comparison of prediction models for fractures in older women”. Arch Intern Med 169(22):2094–2095

    Article  PubMed  Google Scholar 

  11. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444

    Article  PubMed  CAS  Google Scholar 

  12. Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores BMJ 339:b4229

    Google Scholar 

  13. van den Bergh JP, van Geel TA, Lems WF, Geusens PP (2010) Assessment of individual fracture risk: FRAX and beyond Curr Osteoporos Rep 8(3):131–137

    Google Scholar 

  14. Oden A, Johnell O, Johansson H, De Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, La Croix A, McCloskey E, Mellstrom D, Melton LJ 3rd, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, van Staa T, Watts NB, Yoshimura N (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046

    Article  PubMed  Google Scholar 

  15. Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, Cauley JA, Hillier TA, Browner WS, Cummings SR, Study of Osteoporotic Fractures Research Group (2009) A comparison of prediction models for fractures in older women: is more better? Arch Intern Med 169(22):2087–2094

    Article  PubMed  Google Scholar 

  16. Kung AWC, Lee KK, Ho AYY, Tang G, Luk KDK (2007) Ten-year risk of osteoporotic fractures in postmenopausal Chinese women according to clinical risk factors and BMD T-scores: a prospective study. J Bone Miner Res 22(7):1080–1087

    Article  PubMed  Google Scholar 

  17. Mei J, Yeung SSC, Kung AWC (2001) High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 86:5217–5221

    Article  PubMed  CAS  Google Scholar 

  18. Kung AWC, Luk KDK, Chu LW, Tang GWK (1999) Quantitative ultrasound and symptomatic vertebral fracture risk in Chinese women. Osteoporos Int 10:456–461

    Article  PubMed  CAS  Google Scholar 

  19. Lachin JM (2000) Biostatistical methods: The assessment of relative risks. Wiley, New York

    Book  Google Scholar 

  20. Dorfman DD, Berbaum KS, Metz CE (1992) Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method. Invest Radiol 27(9):723–731

    Article  PubMed  CAS  Google Scholar 

  21. Donaldson MG, Palermo L, Schousboe JT, Ensrud KE, Hochberg MC, Cummings SR (2009) FRAX and risk of vertebral fractures: the fracture intervention trial. J Bone Miner Res 24(11):1793–1799

    Article  PubMed  Google Scholar 

  22. Berry SD, Ngo L, Samelson EJ, Kiel DP (2010) Competing risk of death: an important consideration in studies of older adults. J Am Geriatr Soc 58(4):783–787

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. N. Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, E.Y.N., Bow, C.H., Cheung, C.L. et al. Discriminative value of FRAX for fracture prediction in a cohort of Chinese postmenopausal women. Osteoporos Int 23, 871–878 (2012). https://doi.org/10.1007/s00198-011-1647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1647-5

Keywords

Navigation