Skip to main content

Advertisement

Log in

Teriparatide and bisphosphonate use in osteoporotic spinal fusion patients: a systematic review and meta-analysis

  • Review
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Purpose

Osteoporosis is one of the most common conditions among adults worldwide. It also presents a challenge among patients undergoing spinal surgery. Use of Teriparatide and bisphosphonates in such patients has been shown to improve outcomes after fusion surgery, including successful fusion, decreased risk of instrumentation failure, and patient-reported outcomes. Herein, we performed a systematic review and indirect meta-analysis of available literature on outcomes of fusion surgery after use of bisphosphonates or Teriparatide.

Methods

We conducted a comprehensive search of all databases (Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid Embase, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus) to identify studies assessing outcomes of spinal fusion among osteoporotic patients after use of Teriparatide or bisphosphonate. Four authors independently screened electronic search results, and all four authors independently performed study selection. Two authors performed independent data extraction and assessed the studies’ risk of bias assessment using standardized forms of Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) and Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I).

Results

Nineteen studies were included in the final analysis. A total of 13 studies evaluated the difference in fusion rate between bisphosphonates and Teriparatide or control group. Fusion rate was higher for bisphosphonates (effect size (ES) 83%, 95% CI 77–89%) compared with Teriparatide (ES 71%, 95% CI 57–85%), with the p value for heterogeneity between groups without statistical significance (p = 0.123). Five studies assessed the impact of using bisphosphonate or Teriparatide on screw loosening. The rate of screw loosening was higher for bisphosphonates (ES 19%, 95% CI 13–25%) compared with Teriparatide (ES 13%, 95% CI 9–16%) without statistical significance (p = 0.52).

Conclusion

Our results indicate that while both agents may be associated with positive outcomes, bisphosphonates may be associated with a higher fusion rate, while Teriparatide may be associated with lower screw loosening. The decision to treat with either agent should be tailored individually for each patient keeping in consideration the adverse effect and pharmacokinetic profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reginster J-Y, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4–S9

    Article  PubMed  Google Scholar 

  2. Farmer RP, Herbert B, Cuellar DO, Hao J, Stahel PF, Yasui R et al (2014) Osteoporosis and the orthopaedic surgeon: basic concepts for successful co-management of patients’ bone health. Int Orthop 38:1731–1738

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA et al (2018) Incidence of osteoporosis-related complications following posterior lumbar fusion. Global Spine J 8:563–569

    Article  PubMed  Google Scholar 

  4. Park SB, Chung CK (2011) Strategies of spinal fusion on osteoporotic spine. J Korean Neurosurg Soc 49:317–322

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eastell R, Walsh JS (2017) Anabolic treatment for osteoporosis: teriparatide. Clin Cases Miner Bone Metab 14:173–178

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lewiecki EM (2010) Bisphosphonates for the treatment of osteoporosis: insights for clinicians. Ther Adv Chronic Dis 1:115–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu W-B, Zhao W-T, Shen P, Zhang F-J (2018) The effects of bisphosphonates on osteoporotic patients after lumbar fusion: a meta-analysis. Drug Des Devel Ther 12:2233–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wanderman N, Alvi M, Yolcu Y, Carlson B, Sebastian A, Bydon M et al (2019) Is Teriparatide beneficial to spinal fusion surgery in the older patient?: a narrative review. Clin Spine Surg 32:182–190

    Article  PubMed  Google Scholar 

  9. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    Article  PubMed  Google Scholar 

  10. Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc Taylor & Francis 22:209–212

    Article  Google Scholar 

  11. Freeman MF, Tukey JW (1950) Transformations related to the angular and the square root. Ann Math Stat. Institute of Mathematical Statistics 21:607–611

    Article  Google Scholar 

  12. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  13. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ. 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  14. Higgins JPT (2008) Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int. J. Epidemiol 1158–60

  15. Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54:1046–1055

    Article  CAS  PubMed  Google Scholar 

  16. Kim S-M, Rhee W, Ha S, Lim JH, Jang IT (2014) Influence of alendronate and endplate degeneration to single level posterior lumbar spinal interbody fusion. Korean J Spine 11:221–226

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N et al (2012) Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine 37:E1464–E1468

    Article  PubMed  Google Scholar 

  18. Ohtori S, Orita S, Yamauchi K, Eguchi Y, Aoki Y, Nakamura J et al (2017) Does discontinuing Teriparatide treatment and replacing it with bisphosphonate maintain the volume of the bone fusion mass after lumbar posterolateral fusion in women with postmenopausal osteoporosis? Asian Spine J 11:272–277

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang M, Meng X, Li Y, Feng Y, Chang Z, Hai Y (2016) Effects of anti-osteoporosis treatment in the elderly with anterior cervical discectomy and fusion. Acta Orthop Traumatol Turc 50:186–190

    Article  PubMed  Google Scholar 

  20. Chen F, Dai Z, Kang Y, Lv G, Keller ET, Jiang Y (2016) Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int 27:1469–1476

    Article  CAS  PubMed  Google Scholar 

  21. Cho PG, Ji GY, Shin DA, Ha Y, Yoon DH, Kim KN (2017) An effect comparison of teriparatide and bisphosphonate on posterior lumbar interbody fusion in patients with osteoporosis: a prospective cohort study and preliminary data. Eur Spine J 26:691–697

    Article  PubMed  Google Scholar 

  22. Ding Q, Chen J, Fan J, Li Q, Yin G, Yu L (2017) Effect of zoledronic acid on lumbar spinal fusion in osteoporotic patients. Eur Spine J 26:2969–2977

    Article  PubMed  Google Scholar 

  23. Jespersen AB, Andresen ADK, Jacobsen MK, Andersen MØ, Carreon LY (2019) Does systemic administration of parathyroid hormone after noninstrumented spinal fusion surgery improve fusion rates and fusion mass in elderly patients compared to placebo in patients with degenerative lumbar spondylolisthesis? Spine 44:157–162

    Article  PubMed  Google Scholar 

  24. Kaliya-Perumal A-K, Lu M-L, Luo C-A, Tsai T-T, Lai P-L, Chen L-H et al (2017) Retrospective radiological outcome analysis following teriparatide use in elderly patients undergoing multilevel instrumented lumbar fusion surgery. Medicine 96:e5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim JW, Park SW, Kim YB, Ko MJ (2018) The effect of postoperative use of teriparatide reducing screw loosening in osteoporotic patients. J Korean Neurosurg Soc 61:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li C, Wang H-R, Li X-L, Zhou X-G, Dong J (2012) The relation between zoledronic acid infusion and interbody fusion in patients undergoing transforaminal lumbar interbody fusion surgery. Acta Neurochir 154:731–738

    Article  PubMed  Google Scholar 

  27. Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A (2011) Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine 14:500–507

    Article  PubMed  Google Scholar 

  28. Ushirozako H, Hasegawa T, Ebata S, Oba H, Ohba T, Mukaiyama K et al (2019) Weekly teriparatide administration and preoperative anterior slippage of the cranial vertebra next to fusion segment < 2 mm promote osseous union after posterior lumbar interbody fusion. Spine 44:E288–E297

    Article  PubMed  Google Scholar 

  29. Ebata S, Takahashi J, Hasegawa T, Mukaiyama K, Isogai Y, Ohba T et al (2017) Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am 99:365–372

    Article  PubMed  Google Scholar 

  30. Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kuniyoshi K et al (2015) More than 6 months of teriparatide treatment was more effective for bone union than shorter treatment following lumbar posterolateral fusion surgery. Asian Spine J 9:573–580

    Article  PubMed  PubMed Central  Google Scholar 

  31. Park Y-S, Kim H-S, Baek S-W, Kong D-Y, Ryu J-A (2013) The effect of zoledronic acid on the volume of the fusion-mass in lumbar spinal fusion. Clin Orthop Surg 5:292–297

    Article  PubMed  PubMed Central  Google Scholar 

  32. Seki S, Hirano N, Kawaguchi Y, Nakano M, Yasuda T, Suzuki K et al (2017) Teriparatide versus low-dose bisphosphonates before and after surgery for adult spinal deformity in female Japanese patients with osteoporosis. Eur Spine J 26:2121–2127

    Article  PubMed  Google Scholar 

  33. Tu C-W, Huang K-F, Hsu H-T, Li H-Y, Yang SS-D, Chen Y-C (2014) Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res 192:112–116

    Article  CAS  PubMed  Google Scholar 

  34. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N et al (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine 38:E487–E492

    Article  PubMed  Google Scholar 

  35. Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS et al (2007) Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int 18:1219–1224

    Article  CAS  PubMed  Google Scholar 

  36. Lehman RA Jr, Polly DW Jr, Kuklo TR, Cunningham B, Kirk KL, Belmont PJ Jr (2003) Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine 28:2058–2065

    Article  PubMed  Google Scholar 

  37. Lee JH, Lee J-H, Park JW, Shin YH (2012) The insertional torque of a pedicle screw has a positive correlation with bone mineral density in posterior lumbar pedicle screw fixation. J Bone Joint Surg (Br) 94:93–97

    Article  CAS  Google Scholar 

  38. DeWald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine 31:S144–S151

    Article  PubMed  Google Scholar 

  39. Buerba RA, Sharma A, Ziino C, Arzeno A, Ajiboye RM (2018) Bisphosphonate and teriparatide use in thoracolumbar spinal fusion: a systematic review and meta-analysis of comparative studies. Spine 43:E1014–E1023

    Article  PubMed  Google Scholar 

  40. Fretes N, Vellios E, Sharma A, Ajiboye RM (2019) Radiographic and functional outcomes of bisphosphonate use in lumbar fusion: a systematic review and meta-analysis of comparative studies. Eur Spine J. https://doi.org/10.1007/s00586-019-06090-2

  41. Huang RC, Khan SN, Sandhu HS, Metzl JA, Cammisa FP Jr, Zheng F et al (2005) Alendronate inhibits spine fusion in a rat model. Spine 30:2516–2522

    Article  PubMed  Google Scholar 

  42. Xue Q, Li H, Zou X, Dalstra M, Lind M, Christensen FB et al (2010) Alendronate treatment improves bone-pedicle screw interface fixation in posterior lateral spine fusion: an experimental study in a porcine model. Int Orthop 34:447–451

    Article  PubMed  Google Scholar 

  43. Hirsch BP, Unnanuntana A, Cunningham ME, Lane JM (2013) The effect of therapies for osteoporosis on spine fusion: a systematic review. Spine J 13:190–199

    Article  PubMed  Google Scholar 

  44. Inoue G, Ueno M, Nakazawa T, Imura T, Saito W, Uchida K et al (2014) Teriparatide increases the insertional torque of pedicle screws during fusion surgery in patients with postmenopausal osteoporosis. J Neurosurg Spine 21:425–431

    Article  PubMed  Google Scholar 

  45. O’Loughlin PF, Cunningham ME, Bukata SV, Tomin E, Poynton AR, Doty SB et al (2009) Parathyroid hormone (1-34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine 34:121–130

    Article  PubMed  Google Scholar 

  46. Sugiura T, Kashii M, Matsuo Y, Morimoto T, Honda H, Kaito T et al (2015) Intermittent administration of teriparatide enhances graft bone healing and accelerates spinal fusion in rats with glucocorticoid-induced osteoporosis. Spine J 15:298–306

    Article  PubMed  Google Scholar 

  47. Ming N, Cheng JT-Y, Rui Y-F, Chan K-M, Kuhstoss S, Ma YL et al (2012) Dose-dependent enhancement of spinal fusion in rats with teriparatide (PTH[1-34]). Spine 37:1275–1282

    Article  PubMed  Google Scholar 

  48. Seeman E (2003) Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int 14(Suppl 3):S2–S8

    Article  PubMed  Google Scholar 

  49. Heaney RP (2003) Remodeling and skeletal fragility. Osteoporos Int 14(Suppl 5):S12–S15

    Google Scholar 

  50. Russell RGG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Ma X, Wang T, Zhai S (2016) Comparative efficacy of bisphosphonates in short-term fracture prevention for primary osteoporosis: a systematic review with network meta-analyses. Osteoporos Int 27:3289–3300

    Article  CAS  PubMed  Google Scholar 

  52. Santos ERG, Goss DG, Morcom RK, Fraser RD (2003) Radiologic assessment of interbody fusion using carbon fiber cages. Spine 28:997–1001

    PubMed  Google Scholar 

  53. Ito Z, Imagama S, Kanemura T, Hachiya Y, Miura Y, Kamiya M et al (2013) Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study. Eur Spine J 22:1158–1163

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lenke LG, Bridwell KH, Bullis D, Betz RR, Baldus C, Schoenecker PL (1992) Results of in situ fusion for isthmic spondylolisthesis. J Spinal Disord 5:433–442

    Article  CAS  PubMed  Google Scholar 

  55. Glassman SD, Dimar JR, Carreon LY, Campbell MJ, Puno RM, Johnson JR (2005) Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine 30:1694–1698

    Article  PubMed  Google Scholar 

  56. Bridwell KH, Lenke LG, McEnery KW, Baldus C, Blanke K (1995) Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects? Spine 20:1410–1418

    Article  CAS  PubMed  Google Scholar 

  57. Sandén B, Olerud C, Petrén-Mallmin M, Johansson C, Larsson S (2004) The significance of radiolucent zones surrounding pedicle screws. Definition of screw loosening in spinal instrumentation. J Bone Joint Surg (Br) 86:457–461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Yi Lin.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented as a poster at the Orthopedic Research Society Annual Meeting February 8–11, 2020, at Phoenix, Arizona

Electronic supplementary material

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 118 kb)

ESM 3

(DOCX 1373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, S.H.L., Chien, RS., Lichter, K. et al. Teriparatide and bisphosphonate use in osteoporotic spinal fusion patients: a systematic review and meta-analysis. Arch Osteoporos 15, 158 (2020). https://doi.org/10.1007/s11657-020-00738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-00738-z

Keywords

Navigation