Skip to main content
Log in

Isolation and preliminary functional characterization of MxWRKY64, a new WRKY transcription factor gene from Malus xiaojinensis Cheng et Jiang

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Malus xiaojinensis Cheng et Jiang is a special and significant germplasm resource of semi-dwarf apple in China. Abiotic stresses, such as Fe and high salinity, affect Malus xiaojinensis growth and development. WRKY transcription factors (TFs) are widely involved in the responses of plants to different stresses. In the present study, a new WRKY gene was isolated from Malus xiaojinensis and designated as MxWRKY64. Subcellular localization showed that MxWRKY64 was a nucleus localized protein. The expression level of MxWRKY64 was highly affected by Fe and salt stress in M. xiaojinensis seedlings. When MxWRKY64 was introduced into Arabidopsis thaliana, it greatly increased the Fe and salt tolerance in transgenic plant. When dealt with Fe stress, overexpression of MxWRKY64 in transgenic A. thaliana contributed to higher levels of fresh weight, root length, and contents of chlorophyll and Fe than wild type (WT). Increased expression of MxWRKY64 in transgenic A. thaliana also resulted in higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher contents of proline and chlorophyll, while malondialdehyde (MDA) content was lower, especially in response to salt stress. Therefore, these results suggest that MxWRKY64 probably plays an important role in response to Fe and salt stress in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Abid G, Muhovski Y, Mingeot D, Saidi MN, Aouida M, Aroua I, M’hamdi M, Barhoumi F, Rezgui S, Jebara M (2017) Identification and characterization of two faba bean (Vicia faba L.) WRKY transcription factors and their expression analysis during salt and drought stress. J Agric Sci 155:791–803

    Article  CAS  Google Scholar 

  • An G, Watson BD, Chang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q, Chang Y, Jiang H, Xiang Y, Cheng B (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Cult 119:565–577

    Article  CAS  Google Scholar 

  • Chanwala J, Satpati S, Dixit A, Parida A, Giri M, Dey N (2020) Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genomics 21:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding W, Fang W, Shi S, Zhao Y, Li X, XiaoK (2016) Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Mol Biol Report 34:1111–1126

    Article  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Erpen L, Devi HS, Grosser JW, Dutt M (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult 132:1–25

    Article  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer R, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defense signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong XQ, Hu JB, Liu JH (2014) Cloning and characterization of FcWRKY40, A WRKY transcription factor from Fortunella crassifolia linked to oxidative stress tolerance. Plant Cell Tissue Organ Cult 119:197–210

    Article  CAS  Google Scholar 

  • Gong XQ, Liu JH (2013) Genetic transformation and genes for resistance to abiotic and biotic stresses in citrus and its related genera. Plant Cell Tissue Organ Cult 113:137–147

    Article  CAS  Google Scholar 

  • Gu YB, Ji ZR, Chi FM, Qiao Z, Xu CN, Zhang JX, Dong QL, Zhou ZS (2015) Bioinformatics and expression analysis of the WRKY gene family in apple. Sci Agric Sin 48:3221–3238

    CAS  Google Scholar 

  • Han D, Du M, Zhou Z, Wang S, Li T, Han J, Xu T, Yang G (2020a) Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. Int J Mol Sci 21:1198

    Article  CAS  PubMed Central  Google Scholar 

  • Han D, Du M, Zhou Z, Wang S, Li T, Han J, Xu T, Yang G (2020b) An NAC transcription factor gene from Malus baccata, MbNAC29, increases cold and high salinity tolerance in Arabidopsis. In Vitro Cell Dev-Pl Dol 56:588–599. https://doi.org/10.1007/s11627-020-10105-9

    Article  CAS  Google Scholar 

  • Han D, Han J, Yang G, Wang S, Xu T, Li W (2020c) An ERF transcription factor gene from Malus baccata (L.) Borkh, MbERF11, affects cold and salt stress tolerance in Arabidopsis. Forests 11:514

    Article  Google Scholar 

  • Han D, Shi Y, Yu Z, Liu W, Lv B, Wang B, Yang G (2015) Isolation and functional analysis of MdCS1: a gene encoding a citrate synthase in Malus domestica (L.) Borkh. Plant Growth Regul 75:209–218

    Article  CAS  Google Scholar 

  • Han D, Wang Y, Zhang Z, Pu Q, Ding H, Han J, Fan T, Bai X, Yang Y (2017) Isolation and functional analysis of MxCS3: a gene encoding a citrate synthase in Malus xiaojinensis, with functions in tolerance to iron stress and abnormal flower in transgenic Arabidopsis thaliana. Plant Growth Regul 82:479–489

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ding H, Chai L, Liu W, Li H, Yang G (2018a) Isolation and characterization of MbWRKY2 gene involved in enhanced drought tolerance in transgenic tobacco. J Plant Interact 13:163–172

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ding H, Wang Y, Liu W, Li H, Yang G (2018b) Molecular cloning and functional analysis of MbWRKY3 involved in improved drought tolerance in transformed tobacco. J Plant Interact 13:329–337

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ni B, Ding H, Liu W, Li W, Chai L, Yang G (2018c) Isolation and functional analysis of MxNAS3 involved in enhanced iron stress tolerance and abnormal flower in transgenic Arabidopsis. J Plant Interact 13:433–441

    Article  CAS  Google Scholar 

  • Han Z, Shen T, Korcak RF, Baligar VC (1998) Iron absorption by iron-efficient and inefficient species of apples. J Plant Nutr 21:181–190

    Article  CAS  Google Scholar 

  • Hao NB, Du WG, Ge QY, Zhang GR, Li WH, Man WQ, Peng DC, Bai KZ, Kuang TY (2002) Progress in the breeding of soybean for high photosynthetic efficiency. Acta Bot Sin 44:253–258

    CAS  Google Scholar 

  • Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Gen Genomics 287:495–513

    Article  CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563–571

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wang C, Wang F, Liu S, Li G, Guo X (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS One 10:e0120646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lin L, Zhong S, Cai Y, Zhang F, Wang X, Miao R, Zhang B, Gao S, Hu X (2019) Overexpression of novel lncRNA NLIPMT inhibits metastasis by reducing phosphorylated glycogen synthase kinase 3 in breast cancer. J Cell Physiol 234:10689–10708

    Article  Google Scholar 

  • Lee H, Cha J, Choi C, Choi N, Ji H, Park S, Lee S, Hwang D (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Wang Z, Yokosho K, Ding B, Fan W, Gong Q, Li G, Wu Y, Yang J, Ma J, Zheng S (2018) Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa). New Phytol 219:149–162

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Leib K, Zhao P, Kogel KH, Langen G (2014) Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and-2 as repressors of the pathogen-inducible gene HvGER4c. Mol Gen Genomics 289:1331–1345

    Article  CAS  Google Scholar 

  • Liu W, Wu T, Li Q, Zhang X, Xu X, Li T, Han Z, Wang Y (2018) An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. Sci Rep 8:1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luan Q, Chen C, Liu M, Li Q, Wang L, Ren Z (2019) CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus. Plant Sci 279:59–69

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H (2019) GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci 9:1979

    Article  PubMed  PubMed Central  Google Scholar 

  • Matysik J, Alia A, Bhalu B, Mohanty P (2002) Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Pan Y, Wu L, Yu Z (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses off plants-a review. Plant Soil Environ 54:89–99

    Article  CAS  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Bioph Res Co 464:428433

    Article  CAS  Google Scholar 

  • Ranieri A, Petacco F, Castagna A, Soldatini GM (2000) Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci 159:159–167

    Article  CAS  PubMed  Google Scholar 

  • Ricachenevsky FK, Sperotto RA, Menguer PK (2010) Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep 37:3735–3745

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarina LS, Malyukova LS, Efremov AM, Simonyan TA, Matskiv AO, Koninskaya NG, Rakhmangulov RS, Gvasaliya MV, Malyarovskaya VI, Ryndin AV, Orlov YL, Tong W, Hanke MV (2020) Physiological, biochemical and genetic responses of Caucasian tea (Camellia sinensis (L.) Kuntze) genotypes under cold and frost stress. PEERJ 8:e9787

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh K, Foley R, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF (2015) WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol 167:1579–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult 118:77–86

    Article  CAS  Google Scholar 

  • Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao J, Chen SG, Qin CY, Li Y, Li T, Zhang KM (2005) Influences of salt-alkali stress on MDA and protective enzyme activity of popular varieties. J North-East Forestry University 33:13–15

    Google Scholar 

  • Van Verk M, Pappaioannou D, Neeleman L, Bol J, Linthorst H (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viana VE, Busanello C, Da Maia LC, Pegoraro C, De Oliveira AC (2018) Activation of rice WRKY transcription factors: an army of stress fighting soldiers? Curr Opin Plant Biol 45:268–275

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8:e65120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012) A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39:4553–4564

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yan Y, Li Y, Chu X, Wu C, Guo X (2014) GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS One 9:e93577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu K, Guo Z, Wang H, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  CAS  PubMed  Google Scholar 

  • Xiu H, Nuruzzaman M, Guo X, Cao H, Huang J, Chen X, Wu K, Zhang R, Huang Y, Luo J, Luo Z (2016) Molecular cloning and expression analysis of eight PgWRKY genes in Panax ginseng responsive to salt and hormones. Int J Mol Sci 17:319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu F, Liu S, Liu Y, Xu J, Liu T, Dong S (2019) Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit. Food Chem 288:201–217

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Li C, Sun L, Ren J, Li G, Ding Z, Zheng S (2016) A WRKY transcription factor regulates Fe translocation under Fe deficiency. Plant Physiol 171:2017–2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Li J, Liu W, Yu Z, Shi Y, Lv B, Wang B, Han D (2015) Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Sci Hortic 183:77–86

    Article  CAS  Google Scholar 

  • Zhang L, Xi DM, Luo L, Meng F, Li YZ, Wu CA, Guo XQ (2011) Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress. FEBS J 278:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang NN, Gong SY, Lu R, Li Y, Li XB (2015) Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiol Biochem 96:311–320

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Zheng W, Liu B, Zheng J, Dong F, Liu Z, Wen Z, Yang F, Wang H, Xu Z, Zhao H, Liu Y (2019) Characterizing the role of TaWRKY13 in salt tolerance. Int J Mol Sci 20:5712

    Article  CAS  PubMed Central  Google Scholar 

  • Zhu D, Hou L, Xiao P, Guo Y, Deyholos M, Liu X (2019) VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Sci 28:132–142

    Article  CAS  Google Scholar 

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China (31301757), the Natural Science Fund Joint Guidance Project of Heilongjiang Province (LH2019C031; LH2020C009), the Young Talent Project of Northeast Agricultural University (19QC06), and the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (LBH-Q16020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiemei Li or Guohui Yang.

Additional information

Editor: Yong Eui Choi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Han, J., Xu, T. et al. Isolation and preliminary functional characterization of MxWRKY64, a new WRKY transcription factor gene from Malus xiaojinensis Cheng et Jiang. In Vitro Cell.Dev.Biol.-Plant 57, 202–213 (2021). https://doi.org/10.1007/s11627-021-10171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-021-10171-7

Keywords

Navigation