Skip to main content
Log in

Designing disposable hand-made screen-printed electrode using conductive ink for electrochemical determination of dopamine

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, we detailed the improvement of a hand-made screen-printed electrode (SPE), which has easy production with conductive ink. The preparation of the hand-made SPE based on conductive ink to be transferred to cardboard substrates as electrochemical sensors. Thanks to its advantages such as being cheap and easy to obtain, cardboard was preferred as a substrate. As a new approach, we report for the first time in the literature the alkaline pretreatment applied for the cardboard substrate. The conductive ink was used as a working electrode, a counter electrode, and a reference electrode. The components of the developed conductive ink are carboxymethyl cellulose (CMC) as binder, water:ethanol:ethylene glycol as solvent and graphite as conductive material. The SPE was characterized by Fourier-transformed infrared spectroscopy, scanning electron microscopy energy-dispersive X-ray spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The developed electrode was used in the voltammetric determination of dopamine, an important neurotransmitter for human health. The device achieved a linear response between 5.0 and 1000 μM and a limit of detection (LOD) of 1.25 μM. Thus, these developed hand-made SPE was used in the determination of dopamine in a selective, fast, and cost-effective way. It provides a new device approach for electrochemical biosensors and wearable technologies with hand-made screen-printed electrodes developed as easy to prepare, inexpensive and disposable.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and materials can be obtained in the manuscript and supplementary materials.

References

  1. Sajid M, Baig N, Alhooshani K (2019) Chemically modified electrodes for electrochemical detection of dopamine: challenges and opportunities. TrAC Trends Anal Chem 118:368–385. https://doi.org/10.1016/j.trac.2019.05.042

    Article  CAS  Google Scholar 

  2. Lakard S, Pavel I-A, Lakard B (2021) Electrochemical biosensing of dopamine neurotransmitter: a review. Biosensors (Basel) 11:179. https://doi.org/10.3390/bios11060179

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, He F, Zhang F et al (2020) Dopamine and melamine binding to gold nanoparticles dominates their aptamer-based label-free colorimetric sensing. Anal Chem 92:9370–9378. https://doi.org/10.1021/acs.analchem.0c01773

    Article  CAS  PubMed  Google Scholar 

  4. Wei X, Zhang Z, Wang Z (2019) A simple dopamine detection method based on fluorescence analysis and dopamine polymerization. Microchem J 145:55–58. https://doi.org/10.1016/j.microc.2018.10.004

    Article  CAS  Google Scholar 

  5. Mamiński M, Olejniczak M, Chudy M et al (2005) Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology. Anal Chim Acta 540:153–157. https://doi.org/10.1016/j.aca.2004.09.011

    Article  CAS  Google Scholar 

  6. Erçarıkcı E, Aksu Z, Topçu E, Kıranşan KD (2022) ZnS Nanoparticles-decorated composite graphene paper: a novel flexible electrochemical sensor for detection of dopamine. Electroanalysis 34:91–102. https://doi.org/10.1002/elan.202100496

    Article  CAS  Google Scholar 

  7. Wiench P, González Z, Gryglewicz S et al (2019) Enhanced performance of pyrrolic N-doped reduced graphene oxide-modified glassy carbon electrodes for dopamine sensing. J Electroanal Chem 852:113547. https://doi.org/10.1016/j.jelechem.2019.113547

    Article  CAS  Google Scholar 

  8. Jahani S, Beitollahi H (2016) Selective Detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes. Electroanalysis 28:2022–2028. https://doi.org/10.1002/elan.201501136

    Article  CAS  Google Scholar 

  9. Ibáñez-Redín G, Wilson D, Gonçalves D, Oliveira ON (2018) Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J Colloid Interface Sci 515:101–108. https://doi.org/10.1016/j.jcis.2017.12.085

    Article  CAS  PubMed  Google Scholar 

  10. Cougnon C (2006) Modelling by impedance measurements of screen printing electrodes containing different ratio of poly(vinyl chloride) and cellulose acetate. Electrochim Acta 51:4142–4147. https://doi.org/10.1016/j.electacta.2005.11.033

    Article  CAS  Google Scholar 

  11. Ping J, Wu J, Ying Y (2010) Development of an ionic liquid modified screen-printed graphite electrode and its sensing in determination of dopamine. Electrochem Commun 12:1738–1741. https://doi.org/10.1016/j.elecom.2010.10.010

    Article  CAS  Google Scholar 

  12. Kim DS, Jeong J-M, Park HJ et al (2021) Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application. Nanomicro Lett 13:87. https://doi.org/10.1007/s40820-021-00617-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambaye AD, Kefeni KK, Mishra SB et al (2021) Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 225:121951. https://doi.org/10.1016/j.talanta.2020.121951

    Article  CAS  PubMed  Google Scholar 

  14. Couto RAS, Lima JLFC, Quinaz MB (2016) Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 146:801–814. https://doi.org/10.1016/j.talanta.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  15. Camargo JR, Silva TA, Rivas GA, Janegitz BC (2022) Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim Acta 409:139968. https://doi.org/10.1016/j.electacta.2022.139968

    Article  CAS  Google Scholar 

  16. Cinti S, Arduini F (2017) Graphene-based screen-printed electrochemical (bio)sensors and their applications: efforts and criticisms. Biosens Bioelectron 89:107–122. https://doi.org/10.1016/j.bios.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Liu F, Qiu X, Xu J et al (2019) High conductivity and transparency of graphene-based conductive ink: prepared from a multi-component synergistic stabilization method. Prog Org Coat 133:125–130. https://doi.org/10.1016/j.porgcoat.2019.04.043

    Article  CAS  Google Scholar 

  18. De Araujo Andreotti IA, Orzari LO, Camargo JR et al (2019) Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink. J Electroanal Chem 840:109–116. https://doi.org/10.1016/j.jelechem.2019.03.059

    Article  CAS  Google Scholar 

  19. Wang J, Pamidi PVA, Park DS (1996) Screen-printable sol−gel enzyme-containing carbon inks. Anal Chem 68:2705–2708. https://doi.org/10.1021/ac960159n

    Article  CAS  PubMed  Google Scholar 

  20. Capasso A, Del Rio Castillo AE, Sun H et al (2015) Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun 224:53–63. https://doi.org/10.1016/j.ssc.2015.08.011

    Article  CAS  Google Scholar 

  21. Orzari LO, Cristina de Freitas R, de Araujo A, Andreotti I et al (2019) A novel disposable self-adhesive inked paper device for electrochemical sensing of dopamine and serotonin neurotransmitters and biosensing of glucose. Biosens Bioelectron 138:111310. https://doi.org/10.1016/j.bios.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Zeng Y, Shen L et al (2023) Enhancement on the selective flotation separation of carbon coated LiFePO4 and graphite electrode materials. Sep Purif Technol 311:123252. https://doi.org/10.1016/j.seppur.2023.123252

    Article  CAS  Google Scholar 

  23. Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238. https://doi.org/10.1007/s10973-005-7344-x

    Article  CAS  Google Scholar 

  24. Manbohi A, Ahmadi SH (2019) Sensitive and selective detection of dopamine using electrochemical microfluidic paper-based analytical nanosensor. Sens Biosensing Res 23:100270. https://doi.org/10.1016/j.sbsr.2019.100270

    Article  Google Scholar 

  25. Nontawong N (2018) Fabrication of a three-dimensional electrochemical paper-based device (3D-ePAD) for individual and simultaneous detection of ascorbic acid, dopamine and uric acid. Int J Electrochem Sci 6940–6957. https://doi.org/10.20964/2018.07.65

  26. de Oliveira TR, Fonseca WT, de Oliveira SG, Faria RC (2019) Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes. Talanta 195:480–489. https://doi.org/10.1016/j.talanta.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  27. Nie Z, Nijhuis CA, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483. https://doi.org/10.1039/B917150A

    Article  CAS  PubMed  Google Scholar 

  28. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826. https://doi.org/10.1021/ac9007573

    Article  CAS  PubMed  Google Scholar 

  29. Channon RB, Yang Y, Feibelman KM et al (2018) Development of an electrochemical paper-based analytical device for trace detection of virus particles. Anal Chem 90:7777–7783. https://doi.org/10.1021/acs.analchem.8b02042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Solhi E, Hasanzadeh M, Babaie P (2020) Electrochemical paper-based analytical devices (ePADs) toward biosensing: recent advances and challenges in bioanalysis. Anal Methods 12:1398–1414. https://doi.org/10.1039/D0AY00117A

    Article  CAS  Google Scholar 

  31. Fonseca WT, Castro KR, de Oliveira TR, Faria RC (2021) Disposable and flexible electrochemical paper-based analytical devices using low-cost conductive ink. Electroanalysis 33:1520–1527. https://doi.org/10.1002/elan.202060564

    Article  CAS  Google Scholar 

  32. Rattanarat P, Dungchai W, Siangproh W et al (2012) Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal Chim Acta 744:1–7. https://doi.org/10.1016/j.aca.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  33. Chen W, He H, Zhu H et al (2018) Thermo-responsive cellulose-based material with switchable wettability for controllable oil/water separation. Polymers (Basel) 10:592. https://doi.org/10.3390/polym10060592

    Article  CAS  PubMed  Google Scholar 

  34. Hospodarova V, Singovszka E, Stevulova N (2018) Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. Am J Analyt Chem 09:303–310. https://doi.org/10.4236/ajac.2018.96023

    Article  CAS  Google Scholar 

  35. Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym Degrad Stab 96:679–685. https://doi.org/10.1016/j.polymdegradstab.2010.12.007

    Article  CAS  Google Scholar 

  36. Demsash HD (2018) Synthesis and characterization of cellulose-based hydrogels using citric acid as a crosslinker furfural production view project utilization of carbon dioxide for syngas production via glycerol dry reforming: thermodynamic investigation. View Project

  37. Vijayaraghavan T, Sivasubramanian R, Hussain S, Ashok A (2017) A facile synthesis of LaFeO3-based perovskites and their application towards sensing of neurotransmitters. ChemistrySelect 2:5570–5577. https://doi.org/10.1002/slct.201700723

    Article  CAS  Google Scholar 

  38. Ruiz S, Tamayo JA, Ospina JD et al (2019) Antimicrobial films based on nanocomposites of chitosan/poly(vinyl alcohol)/graphene oxide for biomedical applications. Biomolecules 9. https://doi.org/10.3390/biom9030109

  39. Dokur E, Uruc S, Gorduk O, Sahin Y (2023) A novel approach for ultrasensitive amperometric determination of NADH via graphene-based electrode obtained by electrochemical intercalation of tetraalkylammonium ions. Ionics (Kiel). https://doi.org/10.1007/s11581-023-04948-6

    Article  Google Scholar 

  40. Karimi MA, Aghaei VH, Nezhadali A, Ajami N (2018) Graphitic carbon nitride as a new sensitive material for electrochemical determination of trace amounts of tartrazine in food samples. Food Anal Methods 11:2907–2915. https://doi.org/10.1007/s12161-018-1264-4

    Article  Google Scholar 

  41. Qin J, He C, Zhao N et al (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738. https://doi.org/10.1021/nn406105n

    Article  CAS  PubMed  Google Scholar 

  42. Sardana S, Gupta A, Maan AS et al (2022) Design and synthesis of polyaniline/MWCNT composite hydrogel as a binder-free flexible supercapacitor electrode. Indian J Phys 96:433–439. https://doi.org/10.1007/s12648-020-01996-w

    Article  CAS  Google Scholar 

  43. Randviir EP (2018) A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim Acta 286:179–186. https://doi.org/10.1016/j.electacta.2018.08.021

    Article  CAS  Google Scholar 

  44. Mau Dang C, Kim Huynh K, My Thi Dang D. Influence of solvents on characteristics of inkjet printing conductive ink based on nano silver particles. Science Signpost Publishing

  45. Htwe YZN, Hidayah IN, Mariatti M (2020) Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J Mater Sci Mater Electron 31:15361–15371. https://doi.org/10.1007/s10854-020-04100-4

    Article  CAS  Google Scholar 

  46. Zheng H, Yang R, Liu G et al (2012) Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J Phys Chem C 116:4875–4882. https://doi.org/10.1021/jp208428w

    Article  CAS  Google Scholar 

  47. Mohamed HM (2016) Screen-printed disposable electrodes: pharmaceutical applications and recent developments. TrAC - Trends Anal Chem 82:1–11

    Article  CAS  Google Scholar 

  48. Saghravanian M, Ebrahimi M, Es’haghi Z, Beyramabadi SA (2017) Experimental sensing and density functional theory study of an ionic liquid mediated carbon nanotube modified carbon-paste electrode for electrochemical detection of metronidazole. South Afr J Chem 70:29–37. https://doi.org/10.17159/0379-4350/2017/v70a5

    Article  CAS  Google Scholar 

  49. Xu B, Wang H, Zhu Q et al (2018) Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater 12:128–136. https://doi.org/10.1016/j.ensm.2017.12.006

    Article  Google Scholar 

  50. Htwe YZN, Chow WS, Suriati G et al (2019) Properties enhancement of graphene and chemical reduction silver nanoparticles conductive inks printed on polyvinyl alcohol (PVA) substrate. Synth Met 256. https://doi.org/10.1016/j.synthmet.2019.116120

  51. Ji A, Chen Y, Wang X, Xu C (2018) Inkjet printed flexible electronics on paper substrate with reduced graphene oxide/carbon black ink. J Mater Sci Mater Electron 29:13032–13042. https://doi.org/10.1007/s10854-018-9425-1

    Article  CAS  Google Scholar 

  52. Pandhi T, Cornwell C, Fujimoto K et al (2020) Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response. RSC Adv 10:38205–38219. https://doi.org/10.1039/d0ra04786d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karim N, Afroj S, Tan S et al (2019) All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci Rep 9:8035. https://doi.org/10.1038/s41598-019-44420-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arapov K, Bex G, Hendriks R et al (2016) Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv Eng Mater 18:1234–1239. https://doi.org/10.1002/adem.201500646

    Article  CAS  Google Scholar 

  55. Li W, Chen M (2014) Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics. Appl Surf Sci 290:240–245. https://doi.org/10.1016/j.apsusc.2013.11.057

    Article  CAS  Google Scholar 

  56. Xu LY, Yang GY, Jing HY et al (2014) Ag-graphene hybrid conductive ink for writing electronics. Nanotechnology 25. https://doi.org/10.1088/0957-4484/25/5/055201

  57. Hsine Z, Mlika R, Jaffrezic-Renault N, Korri-Youssoufi H (2022) Review—Recent progress in graphene based modified electrodes for electrochemical detection of dopamine. Chemosensors 10

  58. Kang J, Kim T, Tak Y et al (2012) Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J Ind Eng Chem 18:800–807. https://doi.org/10.1016/j.jiec.2011.10.002

    Article  CAS  Google Scholar 

  59. Gorduk O, Gorduk S, Sahin Y (2020) Fabrication of tetra-substituted copper(II) phthalocyanine-graphene modified pencil graphite electrode for amperometric detection of hydrogen peroxide. ECS J Solid State Sci Technol 9:061003. https://doi.org/10.1149/2162-8777/ab9c7a

    Article  CAS  Google Scholar 

  60. Chatti M, Gardiner JL, Fournier M et al (2019) Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat Catal 2:457–465. https://doi.org/10.1038/s41929-019-0277-8

    Article  CAS  Google Scholar 

  61. Cheng M, Zhang X, Wang M et al (2017) A facile electrochemical sensor based on well-dispersed graphene-molybdenum disulfide modified electrode for highly sensitive detection of dopamine. J Electroanal Chem 786:1–7. https://doi.org/10.1016/j.jelechem.2017.01.012

    Article  CAS  Google Scholar 

  62. Gharous M, Bounab L, Pereira FJ et al (2023) Electrochemical kinetics and detection of paracetamol by stevensite-modified carbon paste electrode in biological fluids and pharmaceutical formulations. Int J Mol Sci 24:11269. https://doi.org/10.3390/ijms241411269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reddy S, Kumara Swamy BE, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86. https://doi.org/10.1016/j.electacta.2011.11.091

    Article  CAS  Google Scholar 

  64. Sun W, Yang M, Jiao K (2007) Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Anal Bioanal Chem 389:1283–1291. https://doi.org/10.1007/s00216-007-1518-2

    Article  CAS  PubMed  Google Scholar 

  65. Dokur E, Gorduk O, Sahin Y (2020) Selective electrochemical sensing of riboflavin based on functionalized multi-walled carbon nanotube/gold nanoparticle/pencil graphite electrode. ECS J Solid State Sci Technol 9:121003. https://doi.org/10.1149/2162-8777/abcdff

    Article  CAS  Google Scholar 

  66. Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREE—analytical GREEnness metric approach and software. Anal Chem 92:10076–10082. https://doi.org/10.1021/acs.analchem.0c01887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu G, Ho C, Slappey N et al (2016) A wearable conductivity sensor for wireless real-time sweat monitoring. Sens Actuators B Chem 227:35–42. https://doi.org/10.1016/j.snb.2015.12.034

    Article  CAS  Google Scholar 

  68. Pradela-Filho LA, Araújo DAG, Takeuchi RM, Santos AL (2017) Nail polish and carbon powder: an attractive mixture to prepare paper-based electrodes. Electrochim Acta 258:786–792. https://doi.org/10.1016/j.electacta.2017.11.127

    Article  CAS  Google Scholar 

  69. Pradela-Filho LA, Andreotti IAA, Carvalho JHS et al (2020) Glass varnish-based carbon conductive ink: a new way to produce disposable electrochemical sensors. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2019.127433

    Article  Google Scholar 

  70. da Costa TH, Song E, Tortorich RP, Choi J-W (2015) A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes. ECS J Solid State Sci Technol 4:S3044–S3047. https://doi.org/10.1149/2.0121510jss

    Article  CAS  Google Scholar 

  71. Jiang J, Du X (2014) Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale 6:11303–11309. https://doi.org/10.1039/c4nr01774a

    Article  CAS  PubMed  Google Scholar 

  72. Dinesh B, Saraswathi R, Senthil Kumar A (2017) Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 233:92–104. https://doi.org/10.1016/j.electacta.2017.02.139

    Article  CAS  Google Scholar 

  73. Wang C, Du J, Wang H et al (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B Chem 204:302–309. https://doi.org/10.1016/j.snb.2014.07.077

    Article  CAS  Google Scholar 

  74. Han D, Han T, Shan C et al (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 22:2001–2008. https://doi.org/10.1002/elan.201000094

    Article  CAS  Google Scholar 

  75. Wiench P, González Z, Menéndez R et al (2018) Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sens Actuators B Chem 257:143–153. https://doi.org/10.1016/j.snb.2017.10.106

    Article  CAS  Google Scholar 

  76. Zhu Z, Qu L, Guo Y et al (2010) Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. Sens Actuators B Chem 151:146–152. https://doi.org/10.1016/j.snb.2010.09.032

    Article  CAS  Google Scholar 

  77. Stoyanova A, Tsakova V (2010) Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: I. Role of the polymer layer thickness. J Solid State Electrochem 14:1947–1955. https://doi.org/10.1007/s10008-010-1007-y

    Article  CAS  Google Scholar 

  78. Gaolatlhe L, Barik R, Ray SC, Ozoemena KI (2020) Voltammetric responses of porous Co3O4 spinels supported on MOF-derived carbons: effects of porous volume on dopamine diffusion processes. J Electroanal Chem 872:113863. https://doi.org/10.1016/j.jelechem.2020.113863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that this paper is submitted in partial fulfillment of the requirements for PhD degree at Yildiz Technical University.

Funding

This study was supported by the Health Institutes of Turkey (TUSEB Group B R&D Project Support Program:2022-B-02, Project Number:22456).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization is performed by Yucel Sahin and Ozge Gorduk. All authors contributed to the study’s writing review and editing. Experiments, data collection, and analysis were performed by Ebrar Dokur, Selen Uruc, Rabianur Kurteli, and Ozge Gorduk. The first draft of the manuscript was written by Ebrar Dokur, Selen Uruc, Rabianur Kurteli, Ozge Gorduk, and Yucel Sahin, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yucel Sahin.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.81 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokur, E., Uruc, S., Kurteli, R. et al. Designing disposable hand-made screen-printed electrode using conductive ink for electrochemical determination of dopamine. Ionics 29, 5465–5480 (2023). https://doi.org/10.1007/s11581-023-05239-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05239-w

Keywords

Navigation