Skip to main content

Advertisement

Log in

Design and synthesis of polyaniline/MWCNT composite hydrogel as a binder-free flexible supercapacitor electrode

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The novel polyaniline/MWCNT composite hydrogel has been successfully synthesized on carbon cloth using in situ oxidative polymerization of aniline in the presence of MWCNT and phytic acid which can further be used as a binder-free electrode for supercapacitor. The use of electrode without binder is an effective approach to get better electrochemical behavior, which makes the ions move quicker. The supercapacitor cell has been built in a Teflon Swagelok assembly by sandwiching a separator impregnated with 1 M H2SO4 electrolyte between two symmetrical hydrogel electrodes and used further for electrochemical characterization. The electrochemical behavior of supercapacitor electrodes has been explored in a two-electrode cell configuration using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. The electrochemical results reveal that in 1 M H2SO4 aqueous solution, polyaniline/MWCNT composite hydrogel possesses a high specific capacitance (Cs) value of 277.59 F/g as compared to Cs value of 142.24 F/g for polyaniline hydrogel at 0.25 A/g. The polyaniline/MWCNT electrode shows superior rate capability and outstanding cyclic stability up to 5000 consecutive cycles. The electrochemical performance of composite hydrogel may be attributed to its well-designed nanostructure and the collective effect of both components. It may be concluded that as prepared composite hydrogel serves as a favorable electrode material for highly capable flexible energy storage system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y Shao, M F El-Kady, L J Wang et al. Chem. Soc. Rev. 44 3639 (2015)

    Article  Google Scholar 

  2. A M Gaikwad, A C Arias and D A Steingart Energy Technol. 3 305 (2015)

    Article  Google Scholar 

  3. Z Wu, Y Wang, X Liu et al. Adv. Mater. 31 1800716 (2019)

    Article  Google Scholar 

  4. Y Meng, K Wang, Y Zhang and Z Wei Adv. Mater. 25 6985 (2013)

    Article  Google Scholar 

  5. B Dyatkin, V Presser, M Heon et al. ChemSusChem 6 2269 (2013)

    Article  Google Scholar 

  6. G Wang, L Zhang and J Zhang Chem. Soc. Rev. 41 797 (2012)

    Article  Google Scholar 

  7. S Chalotra, R A Mir, G Kaur and O P Pandey Ceram. Int. 46 703 (2020)

    Article  Google Scholar 

  8. P Simon and Y Gogotsi Materials for electrochemical capacitors (Co-Published with Macmillan Publishers Ltd, UK) p 320 (2009)

  9. B P Reddy, K S Ganesh, S-H Park and O M Hussain Indian J. Phys. 92 21 (2018)

    Article  ADS  Google Scholar 

  10. A Moyseowicz and G Gryglewicz Compos. Part B Eng. 159 4 (2019)

    Article  Google Scholar 

  11. A Ye, Q Zhu, X Zhang and Z Yang ACS Appl. Energy Mater. 3 3082 (2020)

    Article  Google Scholar 

  12. Z Yang, A Qiu, J Ma and M Chen Compos. Sci. Technol. 156 231 (2018)

    Article  Google Scholar 

  13. D Qu J. Power Sources 109 403 (2002)

  14. Q Ke and J Wang J. Mater. 2 37 (2016)

    Google Scholar 

  15. S Mitra, S Banerjee, A Datta and D Chakravorty Indian J. Phys. 90 1019 (2016)

    Article  ADS  Google Scholar 

  16. J Yan, Q Wang, T Wei and Z Fan Adv. Energy Mater. 4 1300816 (2014)

    Article  Google Scholar 

  17. Q Abbas, D Pajak, E Frąckowiak and F Béguin Electrochim. Acta 140 132 (2014)

    Article  Google Scholar 

  18. S Hein, T Danner, D Westhoff et al. J. Electrochem. Soc. 167 13546 (2020)

    Article  Google Scholar 

  19. H Zheng, R Yang, G Liu, X Song and V S Battaglia J. Phys. Chem. C 116 4875 (2012)

    Article  Google Scholar 

  20. S Zeng, H Chen, F Cai et al. J. Mater. Chem. A 3 23864 (2015)

    Article  Google Scholar 

  21. H An, Y Wang, X Wang et al. J. Power Sources 195 6964 (2010)

    Article  ADS  Google Scholar 

  22. P Li, Y Yang, E Shi et al. ACS Appl. Mater. Interfaces 6 5228 (2014)

    Article  Google Scholar 

  23. J Yu, J Wu, H Wang et al. ACS Appl. Mater. Interfaces 8 4724 (2016)

    Article  Google Scholar 

  24. L Wen, K Li, J Liu et al. RSC Adv. 7 7688 (2017)

    Article  ADS  Google Scholar 

  25. P P Ma, N Lei, B Yu et al. Nanomaterials 9 1676 (2019)

    Article  Google Scholar 

  26. J Y Sun, X Zhao, W R K Illeperuma et al. Nature 489 133 (2012)

    Article  ADS  Google Scholar 

  27. Y Lin, H Zhang, H Liao, Y Zhao and K Li Chem. Eng. J. 367 139 (2019)

    Article  Google Scholar 

  28. L Li, Y Wang, L Pan et al. Nano Lett. 15 1146 (2015)

    Article  ADS  Google Scholar 

  29. R D Pyarasani, T Jayaramudu and A John J. Mater. Sci. 54 974 (2019)

    Article  ADS  Google Scholar 

  30. H Guo, W He, Y Lu and X Zhang Carbon 92 133 (2015)

    Article  Google Scholar 

  31. L I Dan, J Huang and R B Kaner Acc. Chem. Res. 42 135 (2009)

    Article  Google Scholar 

  32. L Nyholm, G Nyström, A Mihranyan and M Strømme Adv. Mater. 23 3751 (2011)

    Google Scholar 

  33. M Toupin, T Brousse and D Bélanger Chem. Mater. 16 3184 (2004)

    Article  Google Scholar 

  34. Z Chen, J W F To, C Wang et al. Adv. Energy Mater. 4 1 (2014)

    Article  Google Scholar 

  35. A Jayakumar, Y J Yoon, R Wang and J M Lee RSC Adv. 5 94388 (2015)

    Article  ADS  Google Scholar 

  36. C Niu, E K Sichel, R Hoch, D Moy and H Tennent Appl. Phys. Lett. 70 1480 (1997)

    Article  ADS  Google Scholar 

  37. K H An, W S Kim, Y S Park et al. Adv. Funtional Mater. 11 387 (2001)

    Article  Google Scholar 

  38. R Pal, S L Goyal and I Rawal J. Polym. Res. 27 1 (2020)

    Article  Google Scholar 

  39. G Yu, X Xie, L Pan, Z Bao and Y Cui Nano Energy 2 213 (2013)

    Article  Google Scholar 

  40. A Gupta, S Sardana, J Dalal et al. ACS Appl. Energy Mater. 3 6434 (2020)

    Article  Google Scholar 

  41. X Fu, T Li, F Qi et al. Appl. Surf. Sci. 507 145135 (2020)

    Article  Google Scholar 

  42. P Y Chen, N M Dorval Courchesne, M N Hyder et al. RSC Adv. 5 37970 (2015)

    Article  ADS  Google Scholar 

  43. P Dou, Z Liu, Z Cao et al. J. Mater. Sci. 51 4274 (2016)

    Article  ADS  Google Scholar 

  44. X Liu, P Shang, Y Zhang et al. J. Mater. Chem. A 2 15273 (2014)

    Article  Google Scholar 

  45. Y Kumar, S Rawal, B Joshi and S A Hashmi J. Solid State Electrochem. 23 667 (2019)

    Article  Google Scholar 

  46. N Yadav, K Mishra and S A Hashmi High Perform. Polym. 30 957 (2018)

    Article  Google Scholar 

  47. J Qin, C He, N Zhao et al. ACS Nano 8 1728 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to UGC, New Delhi, and DST, New Delhi for providing financial assistance under UGC-SAP {F530/5/DRS/2012(SAP-1)} and DST-FIST (SR/FST/PSI-162/2011) schemes, respectively. S.S. is thankful to CSIR, New Delhi (No. -09/382(0198)/2017-EMR-1) for providing necessary fellowship. The grant received by S.D. under Dr. R.K. Fund, MDU Rohtak (No. DSW/19311) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Ohlan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardana, S., Gupta, A., Maan, A.S. et al. Design and synthesis of polyaniline/MWCNT composite hydrogel as a binder-free flexible supercapacitor electrode. Indian J Phys 96, 433–439 (2022). https://doi.org/10.1007/s12648-020-01996-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01996-w

Keywords

Navigation