Skip to main content
Log in

Thermal conductivity of exfoliated graphite nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Since the late 1990’s, research has been reported where intercalated, expanded, and/or exfoliated graphite nanoflakes could also be used as reinforcements in polymer systems. The key point to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate graphite using Graphite Intercalated Compounds (GICs). Natural graphite is still abundant and its cost is quite low compared to the other nano–size carbon materials, the cost of producing graphite nanoplatelets is expected to be ~$5/lb. This is significantly less expensive than single wall nanotubes (SWNT) (>$45000/lb) or vapor grown carbon fiber (VGCF) ($40–50/lb), yet the mechanical, electrical, and thermal properties of crystalline graphite flakes are comparable to those of SWNT and VGCF. The use of exfoliated graphite flakes (xGnP) opens up many new applications where electromagnetic shielding, high thermal conductivity, gas barrier resistance or low flammability are required.

A special thermal treatment was developed to exfoliate graphite flakes for the production of nylon and high density polypropylene nanocomposites. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the degree of exfoliation of the graphite platelets and the morphology of the nanocomposites. The thermal conductivity of these composites was investigated by three different methods, namely, by DSC, modified hot wire, and halogen flash lamp methods. The addition of small amounts of exfoliated graphite flakes showed a marked improvement in thermal and electrical conductivity of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Finan, Proceedings of The Annual Technical Conference of The Society of Plastics Engineers, 1999, p. 1547.

  2. K Watari (2001) J. Ceram. Soc. Japan 109 S7-S16

    Google Scholar 

  3. JB Donnet et al. (1998) Carbon Black, 3rd Edition Marcel Dekker, Inc. New York

    Google Scholar 

  4. JA Heiser JA King (2004) Polym. Compos. 25 186 Occurrence Handle1:CAS:528:DC%2BD2cXktFKgt70%3D Occurrence Handle10.1002/pc.20015

    Article  CAS  Google Scholar 

  5. EH Weber ML Clingerman JA King (2003) J. Appl. Polym. Sci. 88 112 Occurrence Handle1:CAS:528:DC%2BD3sXhtFamuro%3D Occurrence Handle10.1002/app.11571

    Article  CAS  Google Scholar 

  6. Y Agari Y Uno (1985) J. Appl. Polym. Sci. 30 2225 Occurrence Handle1:CAS:528:DyaL2MXit1Wmt7k%3D Occurrence Handle10.1002/app.1985.070300534

    Article  CAS  Google Scholar 

  7. A Demain J-P Issi (1993) J. Compos. Mater. 27 668 Occurrence Handle1:CAS:528:DyaK2cXhtlGqsL0%3D

    CAS  Google Scholar 

  8. B Nysten J-P Issi (1990) Composites 21 339 Occurrence Handle1:CAS:528:DyaK3MXht1eltbg%3D Occurrence Handle10.1016/0010-4361(90)90349-2

    Article  CAS  Google Scholar 

  9. H Shioyama (2000) Synth. Metals 114 1 Occurrence Handle1:CAS:528:DC%2BD3cXjsVGjsb4%3D Occurrence Handle10.1016/S0379-6779(00)00222-8

    Article  CAS  Google Scholar 

  10. YX Pan ZZ Yu Y-C Ou GH Hu (2000) J. Polym. Sci., Part B: Polym. Phys. 38 1626 Occurrence Handle1:CAS:528:DC%2BD3cXjvVSis7s%3D Occurrence Handle10.1002/(SICI)1099-0488(20000615)38:12<1626::AID-POLB80>3.0.CO;2-R

    Article  CAS  Google Scholar 

  11. GH Chen DJ Wu WG Weng WL Yan (2001) J. Appl. Polym. Sci. 82 2506 Occurrence Handle1:CAS:528:DC%2BD3MXnt1GnsLg%3D Occurrence Handle10.1002/app.2101

    Article  CAS  Google Scholar 

  12. G Chen C Wu W Weng D Wu W Yan. (2003) Polymer 44 1781 Occurrence Handle1:CAS:528:DC%2BD3sXht1yktbc%3D Occurrence Handle10.1016/S0032-3861(03)00050-8

    Article  CAS  Google Scholar 

  13. P Xiao M Xiao K Gong (2001) Polymer 42 4813 Occurrence Handle1:CAS:528:DC%2BD3MXhsFCgsbk%3D Occurrence Handle10.1016/S0032-3861(00)00819-3

    Article  CAS  Google Scholar 

  14. XM Chen (2002) J. Mater. Sci. Lett. 21 213 Occurrence Handle1:CAS:528:DC%2BD38XjsFagsrg%3D Occurrence Handle10.1023/A:1014708808230

    Article  CAS  Google Scholar 

  15. CA Wilkie (2002) Polym. Degrad. Stab. 76 111 Occurrence Handle10.1016/S0141-3910(02)00003-4

    Article  Google Scholar 

  16. W Zheng SC Wong HJ Sue (2002) Polymer 43 6767 Occurrence Handle1:CAS:528:DC%2BD38XotlWisbs%3D Occurrence Handle10.1016/S0032-3861(02)00599-2

    Article  CAS  Google Scholar 

  17. L. T. Drzal and H. Fukushima, United States Patent Application 20040127621, 2004.

  18. G Hakvoort LL van Reijen AJ Aartsen (1985) Thermochim. Acta 93 317 Occurrence Handle1:CAS:528:DyaL2MXmt1aitrk%3D Occurrence Handle10.1016/0040-6031(85)85081-4

    Article  CAS  Google Scholar 

  19. JH Flynn DM Levin (1988) Thermochim. Acta 126 93 Occurrence Handle1:CAS:528:DyaL1cXitFWnur0%3D Occurrence Handle10.1016/0040-6031(88)87254-X

    Article  CAS  Google Scholar 

  20. YP Khanna JP Taylor G Chomyn (1988) Polym. Eng. Sci. 28 1034 Occurrence Handle1:CAS:528:DyaL1cXlvFWgsro%3D Occurrence Handle10.1002/pen.760281604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fukushima H..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, H., Drzal, L.T., Rook, B.P. et al. Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85, 235–238 (2006). https://doi.org/10.1007/s10973-005-7344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7344-x

Keywords

Navigation