Skip to main content

Advertisement

Log in

Flower-like Ni/NiO microspheres decorated by sericin-derived carbon for high-rate lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li–S) batteries are still in difficulty to be commercialized so far, owing largely to the cathode challenges involving severe volume expansion and insulation of sulfur and its complete reduction productions or the notorious shuttle effect caused by dissolution of polysulfides. Herein, we have designed a novel sulfur-loading composite of C/Ni/NiO, consisting of flower-like Ni/NiO porous microspheres superficially decorated by sericin-derived carbon, utilized as cathodes of Li–S batteries. The Ni/NiO porous microspheres provide more active sites for electrochemical ionic exchange by using its large surface areas and also provide a strong polar chemical adsorption with polysulfides via forming Ni-S bonds. Additionally, the conductive metallic nickel and sericin-derived biomass carbon can effectively improve reaction kinetics by accelerating electron transport. Based on the synergistic effects, Li–S batteries with the as-prepared S@C/Ni/NiO cathodes deliver a high initial capacity of 1192.2 mAh g−1 at 0.2 C and a low capacity decay of 0.068% within 1000 cycles at 1.0 C. Meanwhile, a high rate up to 5.0 C with a capacity retention of 171.3 mAh g−1 is also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751–11787

    Article  CAS  Google Scholar 

  2. Evers S, Nazar LF (2012) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46:1135–1143

    Article  Google Scholar 

  3. Yang Y, Zheng GY, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  CAS  Google Scholar 

  4. Sun YM, Liu NA, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1:16071

    Article  CAS  Google Scholar 

  5. Li YJ, Cai YR, Cai ZY, Xu JH, Sonamuthu J, Zhu GC, Militky J, Jin WH, Yao JM (2018) Sulfur-infiltrated yeast-derived nitrogen-rich porous carbon microspheres @ reduced graphene cathode for high-performance lithium-sulfur batteries. Electrochim Acta 285:317–325

    Article  CAS  Google Scholar 

  6. Ma XZ, Jin B, Xin PM, Wang HH (2014) Multiwalled carbon nanotubes-sulfur composites with enhanced electrochemical performance for lithium/sulfur batteries. Appl Surf Sci 307:346–350

    Article  CAS  Google Scholar 

  7. Wang H, Yang Y, Liang Y, Robinson JT, Li Y (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur-battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    Article  CAS  Google Scholar 

  8. Zhang K, Zhao Q, Tao Z, Chen J (2013) Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res 6:38–46

    Article  CAS  Google Scholar 

  9. Wang HQ, Zhang WC, Xu JZ, Guo ZP (2018) Advances in polar materials for lithium-sulfur batteries. Adv Funct Mater 28:1707520

    Article  Google Scholar 

  10. Liu X, Huang JQ, Zhang Q, Mai LQ (2017) Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater 29:1601759

    Article  Google Scholar 

  11. Du C, Wu J, Yang P, Li SY, Xu JM, Song KX (2019) Embedding S@TiO2 nano- spheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim Acta 295:1067–1074

    Article  CAS  Google Scholar 

  12. Wu J, Dai Y, Pan ZJ, Huo DX, Wang T, Zhang HP, Hu J, Yan S (2020) Co3O4 hollow microspheres on polypyrrole nanotubes network enabling long-term cyclability sulfur cathode. Appl Surf Sci 510:145529

    Article  CAS  Google Scholar 

  13. Sun R, Bai Y, Luo M, Qu MX, Wang ZH, Sun W, Sun KN (2021) Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium-sulfur batteries. ACS Nano 15:739–750

    Article  CAS  Google Scholar 

  14. Niu SZ, Zhang SW, Shi R, Wang JW, Wang WJ, Chen XM, Zhang ZQ, Miao J, Amini A, Zhao YS, Cheng C (2020) Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries. Energy Storage Mater 33:73–81

    Article  Google Scholar 

  15. Ci HN, Cai JS, Ma H, Shi ZX, Cui G, Wang ML, Jin J, Wei N, Lu C, Zhao W, Sun JY, Liu ZF (2020) Defective VSe2-graphene heterostructures enabling in situ electrocatalyst evolution for lithium-sulfur batteries. ACS Nano 14:11929–11938

    Article  CAS  Google Scholar 

  16. Zha CY, Zhu XR, Deng J, Zhou Y, Li YS, Chen JM, Ding P, Hu YP, Li YF, Chen HY (2020) Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium–sulfur batteries. Energy Storage Mater 26:40–45

    Article  Google Scholar 

  17. Zhang LL, Liu DB, Muhammad Z, Wan F, Xie W, Wang YJ, Song L, Niu ZQ, Chen J (2019) Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater 31:1903955

    Article  CAS  Google Scholar 

  18. Wang DR, Luo D, Zhang YG, Zhao Y, Zhou GF, Shui LL, Chen ZW, Wang X (2021) Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 81:105602

    Article  CAS  Google Scholar 

  19. Li JY, Zhang HW, Luo LQ, Li H, He JY, Zu HL, Liu L, Liu H, Wang FY, Song JJ (2021) Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J Mater Chem A 9:2205–2213

    Article  CAS  Google Scholar 

  20. Yang XY, Zu HL, Luo LQ, Zhang HW, Li JY, Yi XB, Liu H, Wang FY, Song JJ (2020) Synergistic tungsten oxide/N, S co-doped carbon nanofibers interlayer as anchor of polysulfides for high-performance lithium-sulfur batteries. J Alloy Compd 833:154969

    Article  CAS  Google Scholar 

  21. Zhu YJ, Wang JG, Xie C, Yang M, Zheng ZJ, Yu RB (2020) Hollow multishelled structural NiO as a “shelter” for high-performance Li-S batteries. Mater Chem Front 4:2971–2975

    Article  CAS  Google Scholar 

  22. Li HD, Gu SN, Tao BR, Xie YM, Guo F, Zhang SH, Liu BS, Liu JH, Zhang WF, Chang HX (2020) Highly wrinkled NiO nanosheet-based hierarchical structure-reduced fluorographene composite for enhanced performance of lithium-sulfur battery. J Taiwan Inst Chem E 111:205–211

    Article  CAS  Google Scholar 

  23. Wu J, Li SY, Yang P, Zhang HP, Du C, Xu JM, Song KX (2019) S@TiO2 nanospheres loaded on PPy matrix for enhanced lithium-sulfur batteries. J Alloys Compd 783:279–285

    Article  CAS  Google Scholar 

  24. Meng XH, Deng D (2019) Bio-inspired synthesis of 3-D network of NiO-Ni nanowires on carbonized eggshell membrane for lithium-ion batteries. Chem Eng Sci 194:134–141

    Article  CAS  Google Scholar 

  25. Wu J, Pan ZJ, Dai Y, Wang T, Zhang HP, Yan S, Xu JM, Song KX (2020) Encapsulation of sulfur cathodes by serecin-derived carbon/Co3O4 hollow microspheres for the long-term cyclability of lithium-sulfur batteries. J Alloys Compd 823:153912

    Article  CAS  Google Scholar 

  26. Madkour M, Abdel-Monem YK, Sagheer FA (2016) Controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: impact of precursor’s geometry on the nanoparticles characteristics. Ind Eng Chem Res 55:12733–12741

    Article  CAS  Google Scholar 

  27. Wang P, Zhang X, Wei Y, Yang P (2019) Ni/NiO nanoparticles embedded inporous graphite nanofibers towards enhanced electrocatalytic performance. Int J Hydrog Energy 44:19792–19804

    Article  CAS  Google Scholar 

  28. Yang Y, Sun XD, Han GQ, Liu X, Zhang XY, Sun YF, Zhang M, Cao Z, Sun YJ (2019) Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal-organic framework. Angew Chem 131:10754–10759

    Article  Google Scholar 

  29. Wang J, Liang JN, Wu JZ, Xuan CJ, Wu ZX, Guo XY, Lai CL, Zhu Y, Wang DL (2018) Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium-sulfur battery. J Mater Chem A 6:6503–6509

    Article  CAS  Google Scholar 

  30. Zhou XY, Chen F, Yang J (2015) Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium-sulfur batteries. J Energy Chem 4:448–455

    Article  CAS  Google Scholar 

  31. Kong L, Peng HJ, Huang JQ, Zhu WC, Zhang G, Zhang ZW, Zhai PY, Sun PP, Xie J, Zhang Q (2017) Beaver-dam-like membrane: a robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. Energy Storage Mater 8:153–160

    Article  Google Scholar 

  32. Shanthi PM, Hanumantha PJ, Ramalinga K, Gattu B, Datta MK, Kumta PN (2019) Sulfonic acid based complex framework materials (CFM): nanostructured polysulfide immobilization systems for rechargeable lithium-sulfur battery. J Electrochem Soc 166:A1827–A1835

    Article  CAS  Google Scholar 

  33. Wang N, Hong Y, Liu TX, Wang Q, Huang J (2021) Sucrose derived microporous-mesoporous carbon for advanced lithium-sulfur batteries. Ceram Int 47:899–906

    Article  CAS  Google Scholar 

  34. Gan QM, Wu BC, Qin N, Chen JL, Luo W, Xiao DJ, Feng J, Liu WL, Zhu YH, Zhang PS (2020) Sandwich-like dual carbon layers coated NiO hollow spheres with superior lithium storage performances. Electrochim Acta 343:136121

    Article  CAS  Google Scholar 

  35. Han K, Zhang Y, Zhang N, Li G, Zhang L (2020) Graphene-modified porous NiO/C composites as anode materials for Li-ion batteries. J Nanosci Nanotechno 20:2514–2520

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LY21E020004, LY19E020011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 233 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wu, J., Li, S. et al. Flower-like Ni/NiO microspheres decorated by sericin-derived carbon for high-rate lithium-sulfur batteries. Ionics 27, 5137–5145 (2021). https://doi.org/10.1007/s11581-021-04275-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04275-8

Keywords

Navigation