Skip to main content
Log in

Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Plasmonic resonators are widely used for the manipulation of light on subwavelength scales through the near-field electromagnetic wave produced by the collective oscillation of free electrons within metallic systems, well known as the surface plasmon (SP). The non-radiative decay of the surface plasmon can excite a plasmonic hot electron. This review article systematically describes the excitation progress and basic properities of SPs and plasmonic hot electrons according to recent publications. The extraction mechanism of plasmonic hot electrons via Schottky conjunction to an adjacent semiconductor is also illustrated. Also, a calculation model of hot electron density is given, where the efficiency of hot-electron excitation, transport and extraction is discussed. We believe that plasmonic hot electrons have a huge potential in the future development of optoelectronic systems and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Törmä and W. L. Barnes, Strong coupling between surface plasmon polaritons and emitters: A review, Rep. Prog. Phys. 78(1), 013901 (2015)

    Article  ADS  Google Scholar 

  2. Z. K. Zhou, J. Liu, Y. Bao, L. Wu, C. E. Png, X. H. Wang, and C. W. Qiu, Quantum plasmonics get applied, Prog. Quantum Electron. 65, 1 (2019)

    Article  ADS  Google Scholar 

  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)

    Article  ADS  Google Scholar 

  4. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Searching for better plasmonic materials, Laser Photonics Rev. 4(6), 795 (2010)

    Article  ADS  Google Scholar 

  5. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 111(6), 3669 (2011)

    Article  Google Scholar 

  6. T. Iqbal, M. U. Farooq, M. Ijaz, S. Afsheen, M. Rizwan, and M. B. Tahir, Optimization of 1D silver grating devices for extraordinary optical transmission, Plasmonics 14(5), 1099 (2019)

    Article  Google Scholar 

  7. M. Zafar, M. Ijaz, and T. Iqbal, Efficient Au nanostructures for NIR-responsive controlled drug delivery systems, Chem. Pap. 75(6), 2277 (2021)

    Article  Google Scholar 

  8. Y. He, K. Laugesen, D. Kamp, S. A. Sultan, L. B. Oddershede, and L. Jauffred, Effects and side effects of plasmonic photothermal therapy in brain tissue, Cancer Nanotechnol. 10(1), 8 (2019)

    Article  Google Scholar 

  9. R. Lu, J. Ni, S. Yin, and Y. Ji, Responsive plasmonic nanomaterials for advanced cancer diagnostics, Front. Chem. 9, 652287 (2021)

    Article  Google Scholar 

  10. R. G. Sobral-Filho, A. M. Brito-Silva, M. Isabelle, A. Jirasek, J. J. Lum, and A. G. Brolo, Plasmonic labeling of subcellular compartments in cancer cells: Multiplexing with fine-tuned gold and silver nanoshells, Chem. Sci. (Camb.) 8(4), 3038 (2017)

    Article  Google Scholar 

  11. S. Ezendam, M. Herran, L. Nan, C. Gruber, Y. Kang, F. Gröbmeyer, R. Lin, J. Gargiulo, A. Sousa-Castillo, and E. Cortés, Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction, ACS Energy Lett. 7(2), 778 (2022)

    Article  Google Scholar 

  12. Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, Plasmonic solar cells: From rational design to mechanism overview, Chem. Rev. 116(24), 14982 (2016)

    Article  Google Scholar 

  13. M. Ijaz, A. Shoukat, A. Ayub, H. Tabassum, H. Naseer, R. Tanveer, A. Islam, and T. Iqbal, Perovskite solar cells: Importance, challenges, and plasmonic enhancement, Int. J. Green Energy 17(15), 1022 (2020)

    Article  Google Scholar 

  14. T. Iqbal, M. Ijaz, M. Javaid, M. Rafique, K. N. Riaz, M. B. Tahir, G. Nabi, M. Abrar, and S. Afsheen, An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell, Plasmonics 14(1), 147 (2019)

    Article  Google Scholar 

  15. H. Zhang, F. Liu, R. J. Blaikie, B. Ding, and M. Qiu, Bifacial omnidirectional and band-tunable light absorption in free-standing core-shell resonators, Appl. Phys. Lett. 120(18), 181110 (2022)

    Article  ADS  Google Scholar 

  16. Y. J. Lu, T. L. Shen, K. N. Peng, P. J. Cheng, S. W. Chang, M. Y. Lu, C. W. Chu, T. F. Guo, and H. A. Atwater, Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold, ACS Photonics 8(1), 335 (2021)

    Article  Google Scholar 

  17. L. Gu, K. Wen, Q. Peng, W. Huang, and J. Wang, Surface-plasmon-enhanced perovskite light-emitting diodes, Small 16(30), 2001861 (2020)

    Article  Google Scholar 

  18. J. A. Huang and L. B. Luo, Low-dimensional plasmonic photodetectors: Recent progress and future opportunities, Adv. Opt. Mater. 6(8), 1701282 (2018)

    Article  Google Scholar 

  19. A. M. Shrivastav, U. Cvelbar, and I. Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics, Commun. Biol. 4(1), 70 (2021)

    Article  Google Scholar 

  20. J. Xavier, S. Vincent, F. Meder, and F. Vollmer, Advances in optoplasmonic sensors- combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles, Nanophotonics 7(1), 1 (2018)

    Article  Google Scholar 

  21. S. Afsheen, T. Iqbal, M. Aftab, A. Bashir, A. Tehseen, M. Y. Khan, and M. Ijaz, Modeling of 1D Au plasmonic grating as efficient gas sensor, Mater. Res. Express 6(12), 126203 (2019)

    Article  ADS  Google Scholar 

  22. S. Afsheen, M. Munir, M. Isa Khan, T. Iqbal, M. Abrar, M. B. Tahir, J. U. Rehman, K. N. Riaz, M. Ijaz, and G. Nabi, Efficient biosensing through 1D silver nanostructured devices using plasmonic effect, Nanotechnology 29(38), 385501 (2018)

    Article  Google Scholar 

  23. T. Iqbal, S. Noureen, S. Afsheen, M. Y. Khan, and M. Ijaz, Rectangular and sinusoidal Au-grating as plasmonic sensor: A comparative study, Opt. Mater. 99, 109530 (2020)

    Article  Google Scholar 

  24. M. Ijaz, M. Aftab, S. Afsheen, and T. Iqbal, Novel Au nano-grating for detection of water in various electrolytes, Appl. Nanosci. 10(11), 4029 (2020)

    Article  ADS  Google Scholar 

  25. S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, and H. Duan, Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation, ACS Nano 10(12), 11105 (2016)

    Article  Google Scholar 

  26. M. S. Verma and M. Chandra, Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: The pivotal role of the particle size, Phys. Chem. Chem. Phys. 23(45), 25565 (2021)

    Article  Google Scholar 

  27. A. Alù and N. Engheta, Plasmonic and metamaterial cloaking: Physical mechanisms and potentials, J. Opt. A 10(9), 093002 (2008)

    Article  ADS  Google Scholar 

  28. H. Xu, Surface-enhanced Raman scattering beyond plasmonics, Front. Phys. 17(2), 23601 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Lan, Y. Gao, X. Fan, M. Li, Q. Hao, and T. Qiu, The origin of ultrasensitive SERS sensing beyond plasmonics, Front. Phys. 16(4), 43300 (2021)

    Article  ADS  Google Scholar 

  30. L. Shi, B. Iwan, R. Nicolas, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babushkin, U. Morgner, S. W. Kim, G. Steinmeyer, H. Merdji, and M. Kovacev, Self-optimization of plasmonic nanoantennas in strong femtosecond fields, Optica 4(9), 1038 (2017)

    Article  ADS  Google Scholar 

  31. L. Shi, J. R. C. Andrade, A. Tajalli, J. Geng, J. Yi, T. Heidenblut, F. B. Segerink, I. Babushkin, M. Kholodtsova, H. Merdji, B. Bastiaens, U. Morgner, and M. Kovacev, Generating ultrabroadband deep-UV radiation and sub-10 nm gap by hybrid-morphology gold antennas, Nano Lett. 19(7), 4779 (2019)

    Article  ADS  Google Scholar 

  32. L. Shi, J. R. C. Andrade, J. Yi, M. Marinskas, C. Reinhardt, E. Almeida, U. Morgner, and M. Kovacev, Nanoscale broadband deep-ultraviolet light source from plasmonic nanoholes, ACS Photonics 6(4), 858 (2019)

    Article  Google Scholar 

  33. M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas, Nano Lett. 12(7), 3778 (2012)

    Article  ADS  Google Scholar 

  34. J. Geng, W. Yan, L. Shi, and M. Qiu, Surface plasmons interference nanogratings: Wafer-scale laser direct structuring in seconds, Light Sci. Appl. 11(1), 189 (2022)

    Article  ADS  Google Scholar 

  35. L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, Plasmonic nanoprinting: Large-area nanoscale energy deposition for efficient surface texturing, Light Sci. Appl. 6(22), e17112 (2017)

    Article  Google Scholar 

  36. T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, and C. Guo, Highspeed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse, Light Sci. Appl. 9(1), 69 (2020)

    Article  ADS  Google Scholar 

  37. W. L. Barnes, Surface plasmon-polariton length scales: A route to sub-wavelength optics, J. Opt. A 8(4), S87 (2006)

    Article  ADS  Google Scholar 

  38. B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals, Nano Lett. 13(2), 378 (2013)

    Article  ADS  Google Scholar 

  39. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37(22), 5271 (1998)

    Article  ADS  Google Scholar 

  40. M. I. Markovic and A. D. Rakic, Determination of the reflection coefficients of laser light of wavelengths λ ∈ (0.22 µm, 200 µm) from the surface of aluminum using the Lorentz-Drude model, Appl. Opt. 29(24), 3479 (1990)

    Article  ADS  Google Scholar 

  41. J. A. Scholl, A. L. Koh, and J. A. Dionne, Quantum plasmon resonances of individual metallic nanoparticles, Nature 483(7390), 421 (2012)

    Article  ADS  Google Scholar 

  42. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of surface plasmon polaritons, Phys. Rep. 408(3–4), 131 (2005)

    Article  ADS  Google Scholar 

  43. T. Iqbal and S. Afsheen, Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: Role of under- and over-milling, Plasmonics 11(5), 1247 (2016)

    Article  Google Scholar 

  44. S. Kasani, K. Curtin, and N. Wu, A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications, Nanophotonics 8(12), 2065 (2019)

    Article  Google Scholar 

  45. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys. 216(4), 398 (1968)

    Article  ADS  Google Scholar 

  46. E. Kretschmann and H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Zeitschrift für Naturforschung A Phys. Sci. 23, 2135 (1968)

    Article  ADS  Google Scholar 

  47. T. Iqbal, Z. Ashfaq, S. Afsheen, M. Ijaz, M. Y. Khan, M. Rafique, and G. Nabi, Surface-enhanced Raman scattering (SERS) on 1D nano-gratings, Plasmonics 15(4), 1053 (2020)

    Article  Google Scholar 

  48. S. Vempati, T. Iqbal, and S. Afsheen, Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating, J. Appl. Phys. 118(4), 043103 (2015)

    Article  ADS  Google Scholar 

  49. G. Vecchi, V. Giannini, and J. Gómez Rivas, Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas, Phys. Rev. Lett. 102(14), 146807 (2009)

    Article  ADS  Google Scholar 

  50. S. L. Chang, Multiple Diffraction of X-Rays in Crystals, Springer Series in Solid-State Sciences (SSSOL, Volume 50), Springer Berlin Heidelberg, 1984

    Book  Google Scholar 

  51. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Surface-plasmon energy gaps and photoluminescence, Phys. Rev. B 52(15), 11441 (1995)

    Article  ADS  Google Scholar 

  52. T. Iqbal, H. Tabassum, S. Afsheen, and M. Ijaz, Novel exposed and buried Au plasmonic grating as efficient sensors, Waves Random Complex Media 32(4), 1571 (2022)

    Article  ADS  Google Scholar 

  53. S. Afsheen, A. Ahmad, T. Iqbal, M. Ijaz, and A. Bashir, Optimizing the sensing efficiency of plasmonic based gas sensor, Plasmonics 16(2), 541 (2021)

    Article  Google Scholar 

  54. M. Javaid and T. Iqbal, Plasmonic bandgap in 1D metallic nanostructured devices, Plasmonics 11(1), 167 (2016)

    Article  Google Scholar 

  55. P. Wang, D. J. Hu, Y. F. Xiao, and L. Pang, Suppression of metal grating to surface plasma radiation, Acta Phys. Sin. 64(8), 087301 (2015)

    Article  Google Scholar 

  56. B. Wang, P. Yu, W. Wang, X. Zhang, H. C. Kuo, H. Xu, and Z. M. Wang, High-Q plasmonic resonances: Fundamentals and applications, Adv. Opt. Mater. 9(7), 2001520 (2021)

    Article  Google Scholar 

  57. S. Sun, H. T. Chen, W. J. Zheng, and G. Y. Guo, Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems, Opt. Express 21(12), 14591 (2013)

    Article  ADS  Google Scholar 

  58. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988

  59. K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58(1), 267 (2007)

    Article  ADS  Google Scholar 

  60. W. Zhang, M. Caldarola, X. Lu, and M. Orrit, Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods, ACS Photonics 5(7), 2960 (2018)

    Article  Google Scholar 

  61. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett. 17(8), 4689 (2017)

    Article  ADS  Google Scholar 

  62. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, Localized and delocalized plasmons in metallic nanovoids, Phys. Rev. B 74(24), 245415 (2006)

    Article  ADS  Google Scholar 

  63. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, Controlling spontaneous emission with plasmonic optical patch antennas, Nano Lett. 13(4), 1516 (2013)

    Article  ADS  Google Scholar 

  64. A. Agrawal, I. Kriegel, and D. J. Milliron, Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals, J. Phys. Chem. C 119(11), 6227 (2015)

    Article  Google Scholar 

  65. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, Plasmonic surface lattice resonances: A review of properties and applications, Chem. Rev. 118(12), 5912 (2018)

    Article  Google Scholar 

  66. M. Ijaz, Plasmonic hot electrons: Potential candidates for improved photocatalytic hydrogen production, Int. J. Hydrogen Energy 48(26), 9609 (2023)

    Article  Google Scholar 

  67. I. Boettcher, J. M. Pawlowski, and S. Diehl, Ultracold atoms and the functional renormalization group, Nucl. Phys. B Proc. Suppl. 228, 63 (2012)

    Article  ADS  Google Scholar 

  68. H. Hertz, Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung, Ann. Phys. 267(8), 983 (1887)

    Article  Google Scholar 

  69. A. Einstein, Über einen die Erzeugung und Verwandlung des lichtes betreffenden heuristischen gesichtspunkt, Ann. Phys. 322(6), 132 (1905)

    Article  MATH  Google Scholar 

  70. M. L. Brongersma, N. J. Halas, and P. Nordlander, Plasmon-induced hot carrier science and technology, Nat. Nanotechnol. 10(1), 25 (2015)

    Article  ADS  Google Scholar 

  71. Y. Dubi and Y. Sivan, “Hot” electrons in metallic nanostructures-non-thermal carriers or heating? Light Sci. Appl. 8(1), 89 (2019)

    Article  ADS  Google Scholar 

  72. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nat. Photonics 8(2), 95 (2014)

    Article  ADS  Google Scholar 

  73. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88(7), 077402 (2002)

    Article  ADS  Google Scholar 

  74. J. B. Khurgin, Hot carriers generated by plasmons: Where are they generated and where do they go from there, Faraday Discuss. 214, 35 (2019)

    Article  ADS  Google Scholar 

  75. J. B. Khurgin, Fundamental limits of hot carrier injection from metal in nanoplasmonics, Nanophotonics 9(2), 453 (2020)

    Article  Google Scholar 

  76. R. Sundararaman, P. Narang, A. S. Jermyn, III Goddard, and H. A. Atwater, Theoretical predictions for hot-carrier generation from surface plasmon decay, Nat. Commun. 5(1), 5788 (2014)

    Article  ADS  Google Scholar 

  77. M. M. Dujardin, and M. L. Theye, Investigation of the optical properties of Ag by means of thin semi-transparent films, J. Phys. Chem. Solids 32(9), 2033 (1971)

    Article  ADS  Google Scholar 

  78. A. A. Maznev, and O. B. Wright, Demystifying umklapp vs normal scattering in lattice thermal conductivity, Am. J. Phys. 82(11), 1062 (2014)

    Article  ADS  Google Scholar 

  79. G. R. Parkins, W. E. Lawrence, and R. W. Christy, Intraband optical conductivity σ(ω, T) of Cu, Ag, and Au: Contribution from electron-electron scattering, Phys. Rev. B 23(12), 6408 (1981)

    Article  ADS  Google Scholar 

  80. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25, Springer Berlin Heidelberg, 1995

    Book  Google Scholar 

  81. L. Landau, On the vibrations of the electronic plasma, Yad. Fiz. 10, 25 (1946)

    MathSciNet  MATH  Google Scholar 

  82. A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: A quantum mechanical consideration, Plasmonics 9(1), 185 (2014)

    Article  Google Scholar 

  83. J. B. Khurgin, Ultimate limit of field confinement by surface plasmon polaritons, Faraday Discuss. 178, 109 (2015)

    Article  ADS  Google Scholar 

  84. J. Khurgin, W. Y. Tsai, D. P. Tsai, and G. Sun, Landau damping and limit to field confinement and enhancement in plasmonic dimers, ACS Photonics 4(11), 2871 (2017)

    Article  Google Scholar 

  85. K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, Photochemistry on metal nanoparticles, Chem. Rev. 106(10), 4301 (2006)

    Article  Google Scholar 

  86. N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, Direct optical excitation of dark plasmons for hot electron generation, Faraday Discuss. 214, 159 (2019)

    Article  ADS  Google Scholar 

  87. H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system, Phys. Rev. B 57(18), 11334 (1998)

    Article  ADS  Google Scholar 

  88. J. M. Ziman, Electrons and phonons: The theory of transport phenomena in solids, Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, 2001

  89. J. B. Khurgin and U. Levy, Generating hot carriers in plasmonic nanoparticles: When quantization does matter, ACS Photonics 7(3), 547 (2020)

    Article  Google Scholar 

  90. T. P. White and K. R. Catchpole, Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits, Appl. Phys. Lett. 101(7), 073905 (2012)

    Article  ADS  Google Scholar 

  91. J. Kadlec, Theory of internal photoemission in sandwich structures, Phys. Rep. 26(2), 69 (1976)

    Article  ADS  Google Scholar 

  92. D. A. Kovacs, J. Winter, S. Meyer, A. Wucher, and D. Diesing, Photo and particle induced transport of excited carriers in thin film tunnel junctions, Phys. Rev. B 76(23), 235408 (2007)

    Article  ADS  Google Scholar 

  93. S. V. Pepper, Optical analysis of photoemission, J. Opt. Soc. Am. 60(6), 805 (1970)

    Article  ADS  Google Scholar 

  94. K. Reuter, U. Hohenester, P. L. de Andres, F. J. García-Vidal, F. Flores, K. Heinz, and P. Kocevar, Electron energy relaxation times from ballistic-electron-emission spectroscopy, Phys. Rev. B 61(7), 4522 (2000)

    Article  ADS  Google Scholar 

  95. C. Scales and P. Berini, Thin-film Schottky barrier photodetector models, IEEE J. Quantum Electron. 46(5), 633 (2010)

    Article  ADS  Google Scholar 

  96. S. Afsheen, T. Iqbal, S. Akram, A. Bashir, A. Tehseen, M. Rafique, M. Shakil, M. Y. Khan, and M. Ijaz, Surface plasmon based 1D-grating device for efficient sensing using noble metals, Opt. Quantum Electron. 52(2), 64 (2020)

    Article  Google Scholar 

  97. T. Iqbal, A. Bashir, M. Shakil, S. Afsheen, A. Tehseen, M. Ijaz, and K. N. Riaz, Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings, Plasmonics 14(2), 493 (2019)

    Article  Google Scholar 

  98. Y. Takahashi and T. Tatsuma, Solid state photovoltaic cells based on localized surface plasmon-induced charge separation, Appl. Phys. Lett. 99(18), 182110 (2011)

    Article  ADS  Google Scholar 

  99. C. Qiu, H. Zhang, C. Tian, X. Jin, Q. Song, L. Xu, M. Ijaz, R. J. Blaikie, and Q. Xu, Breaking bandgap limitation: Improved photosensitization in plasmonic-based CsPbBr3 photodetectors via hot-electron injection, Appl. Phys. Lett. 122(24), 243502 (2023)

    Article  ADS  Google Scholar 

  100. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Photodetection with active optical antennas, Science 332(6030), 702 (2011)

    Article  ADS  Google Scholar 

  101. A. Di Bartolomeo, Graphene schottky diodes: An experimental review of the rectifying graphene/semi-conductor heterojunction, Phys. Rep. 606, 1 (2016)

    Article  MathSciNet  Google Scholar 

  102. S. S. Li, Semiconductor Physical Electronics, New York, Springer, 2006

    Book  Google Scholar 

  103. Y. Huan, S. M. Sun, C. J. Gu, W. J. Liu, S. J. Ding, H. Y. Yu, C. T. Xia, and D. W. Zhang, Recent advances in β-Ga2O3–metal contacts, Nanoscale Res. Lett. 13(1), 246 (2018)

    Article  ADS  Google Scholar 

  104. S. J. Fonash, Solar Cell Device Physics, Elsevier, 2010

Download references

Acknowledgements

The work was supported by the Smart Ideas Fund by Ministry of Business, Innovation and Employment, New Zealand through contract UOOX1802 and the University of Otago, by means of the University of Otago Postgraduate Publishing Bursary (Doctoral).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsin Ijaz or Richard J. Blaikie.

Additional information

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ijaz, M. & Blaikie, R.J. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures. Front. Phys. 18, 63602 (2023). https://doi.org/10.1007/s11467-023-1328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1328-9

Keywords

Navigation