Skip to main content
Log in

Surface plasmon based 1D-grating device for efficient sensing using noble metals

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study presents the design and optimization of device with 1D nanostructured grating modeled on gold (Au), silver (Ag) and copper (Cu) for sensing a minor variation in refractive index (RI). This small change in the adjacent media to metallic grating is detected quite effectively using the unique characteristic of the surface plasmon polaritons (SPPs). The electric field (E-field) of the SPPs penetrates into the nearby media which is very sensitive to slight change in RI. The grating devices has been simulated by using COMSOL Multiphysics 5.3a with periodicity 700 nm, film thickness 50 nm and optimum slit width 300 nm in correspondence with fundamental plasmonic mode. The 0th order transmission spectra have been extracted from each grating device by illuminating (through the substrate side) with p-polarized light at normal incidence. The change in RI of analyte studied to have a significant effect on the resonance wavelength. The sensitivity has been calculated as 700, 731 and 722 nm/RIU for Au, Ag and Cu grating devices respectively which is remarkable. The stability and quick sensing of Au-device make it suitable for application besides some other deficiencies (e.g. slightly less sensitivity as compared to Ag) which should be compromised. Near field analysis has been performed to apprehend the underlying physics connected with each resonance. The highest value of electric and magnetic fields (E-field and H-field) are obtained in the case of Au grating indicating the most efficient excitation of SPPs. This confirms the reasoning behind the efficient sensitivity of Au grating device and finds applications in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Bartlett, P., Baumberg, J., Coyle, S., Abdelsalam, M.: Optical properties of nanostructured metal films. Faraday Discuss. 125, 117–132 (2004)

    Article  ADS  Google Scholar 

  • Brolo, A.G., Gordon, R., Leathem, B., Kavanagh, K.L.: Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813–4815 (2004)

    Article  Google Scholar 

  • Cao, Q., Lalanne, P.: Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88, 057403 (2002)

    Article  ADS  Google Scholar 

  • De Leebeeck, A., Kumar, L.S., De Lange, V., Sinton, D., Gordon, R., Brolo, A.G.: On-chip surface-based detection with nanohole arrays. Anal. Chem. 79, 4094–4100 (2007)

    Article  Google Scholar 

  • Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., Whitesides, G.M.: New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005)

    Article  Google Scholar 

  • Grande, M., Marani, R., Portincasa, F., Morea, G., Petruzzelli, V., D’Orazio, A., Marrocco, V., De Ceglia, D., Vincenti, M.: Asymmetric plasmonic grating for optical sensing of thin layers of organic materials. Sens. Actuators. B Chem. 160, 1056–1062 (2011)

    Article  Google Scholar 

  • Grigorenko, A., Gleeson, H., Zhang, Y., Roberts, N., Sidorov, A., Panteleev, A.: Antisymmetric plasmon resonance in coupled gold nanoparticles as a sensitive tool for detection of local index of refraction. Appl. Phys. Lett. 88, 124103 (2006)

    Article  ADS  Google Scholar 

  • Hanarp, P., Käll, M., Sutherland, D.S.: Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J. Phys. Chem. B 107, 5768–5772 (2003)

    Article  Google Scholar 

  • Homola, J., Piliarik, M.: Surface plasmon resonance (SPR) sensors. In: Surface Plasmon Resonance Based Sensors. Springer, pp. 45–67 (2006)

  • Hu, M., Chen, J., Li, Z.-Y., Au, L., Hartland, G.V., Li, X., Marquez, M., Xia, Y.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)

    Article  Google Scholar 

  • Huang, Y., Duan, X., Wei, Q., Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    Article  ADS  Google Scholar 

  • Iqbal, T.: Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr. Appl. Phys. 15, 1445–1452 (2015)

    Article  ADS  Google Scholar 

  • Iqbal, T., Afsheen, S.: Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate. Curr. Appl. Phys. 16, 453–458 (2016a)

    Article  ADS  Google Scholar 

  • Iqbal, T., Afsheen, S.: Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11, 1247–1256 (2016b)

    Article  Google Scholar 

  • Iqbal, T., Afsheen, S.: One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12, 19–25 (2017)

    Article  Google Scholar 

  • Iqbal, T., Bashir, A., Shakil, M., Afsheen, S., Tehseen, A., Ijaz, M., Riaz, K.N.: Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14(2), 493–499 (2019a)

    Article  Google Scholar 

  • Iqbal, T., Khalil, S., Ijaz, M., Riaz, K.N., Khan, M.I., Shakil, M., Nabi, A.G., Javaid, M., Abrar, M., Afsheen, S.: Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap. Plasmonics 14(3), 775–783 (2019b)

    Article  Google Scholar 

  • Iqbal, T., Ijaz, M., Javaid, M., Rafique, M., Riaz, K.N., Tahir, M.B., Nabi, G., Abrar, M., Afsheen, S.: An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14(1), 147–154 (2019c)

    Article  Google Scholar 

  • Iqbal, T., Farooq, M.U., Ijaz, M., Afsheen, S., Rizwan, M., Tahir, M.B.: Optimization of 1D silver grating devices for extraordinary optical transmission. Plasmonics 14, 1099–1104 (2019d)

    Article  Google Scholar 

  • Javaid, M., Iqbal, T.: Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11, 167–173 (2016)

    Article  Google Scholar 

  • Law, M., Kind, H., Messer, B., Kim, F., Yang, P.: Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. 114, 2511–2514 (2002)

    Article  Google Scholar 

  • Lee, S., Mayer, K.M., Hafner, J.H.: Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal. Chem. 81, 4450–4455 (2009)

    Article  Google Scholar 

  • Li, W.-Y., Xu, L.-N., Chen, J.: Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851–857 (2005)

    Article  Google Scholar 

  • Malyarchuk, V., Hua, F., Mack, N.H., Velasquez, V.T., White, J.O., Nuzzo, R.G., Rogers, J.A.: High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express 13, 5669–5675 (2005)

    Article  ADS  Google Scholar 

  • Mayer, K.M., Hafner, J.H.: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011)

    Article  Google Scholar 

  • McPhillips, J., Murphy, A., Jonsson, M.P., Hendren, W.R., Atkinson, R., Höök, F., Zayats, A.V., Pollard, R.J.: High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4, 2210–2216 (2010)

    Article  Google Scholar 

  • Miller, M.M., Lazarides, A.A.: Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 109, 21556–21565 (2005)

    Article  Google Scholar 

  • Munir, M., Khan, M.I., Iqbal, T., Abrar, M., Tahir, M.B., ur Rehman, J., Ijaz, M., Nabi, G.: Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology 29(38), 385501 (2018)

    Article  Google Scholar 

  • Palik, E.D.: Handbook of optical constants (A). J. Opt. Soc. Am. A 1 (1984)

  • Prasad, J., Zins, I., Branscheid, R., Becker, J., Koch, A.H., Fytas, G., Kolb, U., Sönnichsen, C.: Plasmonic core–satellite assemblies as highly sensitive refractive index sensors. J. Phys. Chem. C 119, 5577–5582 (2015)

    Article  Google Scholar 

  • Raether, H.: Surface plasmons on smooth surfaces. In: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, pp. 4–39 (1988)

  • Romanato, F., Ongarello, T., Zacco, G., Garoli, D., Zilio, P., Massari, M.: Extraordinary optical transmission in one-dimensional gold gratings: near-and far-field analysis. Appl. Opt. 50, 4529–4534 (2011)

    Article  ADS  Google Scholar 

  • Rosengart, E.-H., Pockrand, I.: Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt. Lett. 1, 194–195 (1977)

    Article  ADS  Google Scholar 

  • Sreekanth, K.V., Alapan, Y., ElKabbash, M., Ilker, E., Hinczewski, M., Gurkan, U.A., De Luca, A., Strangi, G.: Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016)

    Article  ADS  Google Scholar 

  • Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)

    Article  Google Scholar 

  • Velázquez-González, J.S., Monzón-Hernández, D., Moreno-Hernández, D., Martínez-Piñón, F., Hernández-Romano, I.: Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens. Actuators B Chem. 242, 912–920 (2017)

    Article  Google Scholar 

  • Wan, Q., Li, Q., Chen, Y., Wang, T.-H., He, X., Li, J., Lin, C.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)

    Article  ADS  Google Scholar 

  • Wang, C., Chu, X., Wu, M.: Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens. Actuators B Chem. 113, 320–323 (2006a)

    Article  ADS  Google Scholar 

  • Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J.: Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006b)

    Article  ADS  Google Scholar 

  • Xiao, S., Zhang, J., Peng, L., Jeppesen, C., Malureanu, R., Kristensen, A., Mortensen, N.A.: Nearly zero transmission through periodically modulated ultrathin metal films. Appl. Phys. Lett. 97, 071116 (2010)

    Article  ADS  Google Scholar 

  • Zhang, X., Feng, S., Zhang, J., Zhai, T., Liu, H., Pang, Z.: Sensors based on plasmonic-photonic coupling in metallic photonic crystals. Sensors 12, 12082–12097 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahir Iqbal or Mohsin Ijaz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsheen, S., Iqbal, T., Akram, S. et al. Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt Quant Electron 52, 64 (2020). https://doi.org/10.1007/s11082-019-2176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2176-2

Keywords

Navigation