Skip to main content
Log in

Principles of electromagnetic waves in metasurfaces

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive parameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles there is not a universal theory available for the understanding and design of metasurface-based devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of them. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which make them different from traditional bulk waves. It is shown that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption should be revised by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces. The exotic properties of metasurfaces may also form the foundations for two new sub-disciplines called “subwavelength surface electromagnetics” and “subwavelength electromagnetics”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauterbach M A. Finding, defining and breaking the diffraction barrier in microscopy–a historical perspective. Opt Nanoscopy, 2012, 1: 1–8

    Article  Google Scholar 

  2. Stelzer E H K, Grill S. The uncertainty principle applied to estimate focal spot dimensions. Opt Commun, 2000, 173: 51–56

    Article  ADS  Google Scholar 

  3. Zheludev N I. What diffraction limit? Nat Mater, 2008, 7: 420–422

    Article  ADS  Google Scholar 

  4. Saleh B E A, Teich M C. Fundamentals of Photonics. 2nd ed. New Jersey: Wiley & Sons, 2007

    Google Scholar 

  5. Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347: 1342–1345

    Article  ADS  Google Scholar 

  6. Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830

    Article  ADS  Google Scholar 

  7. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966–3969

    Article  ADS  Google Scholar 

  9. Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media. Phys Rev, 1962, 128: 606–622

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 063908

    Article  ADS  Google Scholar 

  11. Pu M, Chen P, Wang Y, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett, 2013, 102: 131906

    Article  ADS  Google Scholar 

  12. Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340: 1304–1307

    Article  ADS  Google Scholar 

  13. Guo Y, Wang Y, Pu M, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci Rep, 2015, 5: 8434

    Article  ADS  Google Scholar 

  14. Knott E F, Lunden C D. The two-sheet capacitive Jaumann absorber. IEEE Trans Antennas Propag, 1995, 43: 1339–1343

    Article  ADS  Google Scholar 

  15. Zadeh A K, Karlsson A. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Trans Antennas Propag, 2009, 57: 2307–2314

    Article  ADS  Google Scholar 

  16. Pu M, Hu C, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express, 2011, 19: 17413–17420

    Article  ADS  Google Scholar 

  17. Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett, 2012, 37: 2133–2135

    Article  ADS  Google Scholar 

  18. Ye D, Wang Z, Xu K, et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys Rev Lett, 2013, 111: 187402

    Article  ADS  Google Scholar 

  19. Zhao Y, Liu X X, Alù A. Recent advances on optical metasurfaces. J Opt, 2014, 16: 123001

    Article  ADS  Google Scholar 

  20. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater, 2014, 13: 139–150

    Article  ADS  Google Scholar 

  21. Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339: 1232009

    Article  Google Scholar 

  22. Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc London, 1902, 18: 269

    Article  Google Scholar 

  23. Senior T. Approximate boundary conditions. IEEE Trans Antennas Propag, 1981, 29: 826–829

    Article  ADS  Google Scholar 

  24. Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett, 2004, 84: 4780–4782

    Article  ADS  Google Scholar 

  25. Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308: 534–537

    Article  ADS  Google Scholar 

  26. Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315: 1686–1686

    Article  ADS  Google Scholar 

  27. Liu Z, Wei Q, Zhang X. Surface plasmon interference nanolithography. Nano Lett, 2005, 5: 957–961

    Article  ADS  Google Scholar 

  28. Xiang Z. Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotechnol, 2008, 3: 733–737

    Article  ADS  Google Scholar 

  29. Xu T, Wang C, Du C, et al. Plasmonic beam deflector. Opt Express, 2008, 16: 4753–4759

    Article  ADS  Google Scholar 

  30. Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333–337

    Article  ADS  Google Scholar 

  31. Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics J, 2012, 4: 590–595

    Article  Google Scholar 

  32. Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 2012, 11: 426–431

    Article  ADS  Google Scholar 

  33. Pu M, Feng Q, Wang M, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express, 2012, 20: 2246–2254

    Article  ADS  Google Scholar 

  34. Li S, Luo J, Anwar S, et al. An equivalent realization of coherent perfect absorption under single beam illumination. Sci Rep, 2014, 4: 7369

    Article  ADS  Google Scholar 

  35. Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332: 1291–1294

    Article  ADS  Google Scholar 

  36. Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011, 5: 5855–5863

    Article  Google Scholar 

  37. Pu M, Chen P, Wang Y, et al. Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt Express, 2013, 21: 11618–11627

    Article  ADS  Google Scholar 

  38. Hadad Y, Davoyan A R, Engheta N, et al. Extreme and quantized magneto-optics with graphene meta-atoms and metasurfaces. ACS Photonics, 2014, 1: 1068–1073

    Article  Google Scholar 

  39. Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nat Photonics, 2014, 8: 889–898

    Article  ADS  Google Scholar 

  40. Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag, 2012, 54: 10–35

    Article  Google Scholar 

  41. Minovich A E, Miroshnichenko A E, Bykov A Y, et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev, 2015, 9: 195–213

    Article  Google Scholar 

  42. Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces. Science, 2004, 305: 847–848

    Article  ADS  Google Scholar 

  43. Karlsson A. Approximate boundary conditions for thin structures. IEEE Trans Antennas Propag, 2009, 57: 144–148

    Article  MathSciNet  ADS  Google Scholar 

  44. Pu M, Hu C, Huang C, et al. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt Express, 2013, 21: 992–1001

    Article  ADS  Google Scholar 

  45. Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007

    Google Scholar 

  46. Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express, 2006, 14: 8247–8256

    Article  ADS  Google Scholar 

  47. Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Opt Lett, 2007, 32: 3432–3434

    Article  ADS  Google Scholar 

  48. Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials. Nat Photonics, 2013, 7: 948–957

    Article  ADS  Google Scholar 

  49. Liang G, Wang C, Zhao Z, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Adv Opt Mater, doi: 10.1002/adom.201400596

  50. Wang C, Gao P, Tao X, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl Phys Lett, 2013, 103: 031911

    Article  ADS  Google Scholar 

  51. Xu T, Agrawal A, Abashin M, et al. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 2013, 497: 470–474

    Article  ADS  Google Scholar 

  52. Maas R, Verhagen E, Parsons J, et al. Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials. ACS Photonics, 2014, 1: 670–676

    Article  Google Scholar 

  53. Ren G, Wang C, Yi G, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics, 2013, 8: 1065–1072

    Article  Google Scholar 

  54. Chen X, Grzegorczyk T, Wu B, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E, 2004, 70: 016608

    Article  ADS  Google Scholar 

  55. Choi M, Lee S H, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470: 369–373

    Article  ADS  Google Scholar 

  56. Luo X, Ishihara T. Subwavelength photolithography based on surface- plasmon polariton resonance. Opt Express, 2004, 12: 3055–3065

    Article  ADS  Google Scholar 

  57. Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys Rev Lett, 2013, 110: 197401

    Article  ADS  Google Scholar 

  58. Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335: 427–427

    Article  ADS  Google Scholar 

  59. Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater, 2013, 25: 4567–4572

    Article  Google Scholar 

  60. Pu M, Zhao Z, Wang Y, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci Rep, 2015, 5: 9822

    Article  ADS  Google Scholar 

  61. Gilbert D. On the mathematical theory of suspension bridges, with tables for facilitating their construction. Philos Trans R Soc Lond, 1826, 116: 202–218

    Article  Google Scholar 

  62. Bustamante C, Tinoco I, Maestre M F. Circular differential scattering can be an important part of the circular dichroism of macromolecules. Proc Natl Acad Sci, 1983, 80: 3568–3572

    Article  ADS  Google Scholar 

  63. Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements. Science, 2014, 345: 298–302

    Article  ADS  Google Scholar 

  64. Ma X, Pu M, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci Rep, 2015, 5: 10365

    Article  ADS  Google Scholar 

  65. Wang Y, Pu M, Hu C, et al. Dynamic manipulation of polarization states using anisotropic meta-surface. Opt Commun, 2014, 319: 14–16

    Article  ADS  Google Scholar 

  66. Doumanis E, Goussetis G, Gómez-Tornero J L, et al. Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Trans Antennas Propag, 2012, 60: 212–219

    Article  ADS  Google Scholar 

  67. Yang J, Luo F, Kao T S, et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl, 2014, 3: e185

    Article  Google Scholar 

  68. Pan W, Huang C, Chen P, et al. A low-RCS and high-gain partially reflecting surface antenna. IEEE Trans Antennas Propag, 2014, 62: 945–949

    Article  ADS  Google Scholar 

  69. Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag, 2000, 48: 1230–1234

    Article  ADS  Google Scholar 

  70. Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics, 2010, 4: 83–91

    Article  ADS  Google Scholar 

  71. Wang C, Gao P, Zhao Z, et al. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt Express, 2013, 21: 20683–20691

    Article  ADS  Google Scholar 

  72. Gao P, Yao N, Wang C, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett, 2015, 106: 093110

    Article  ADS  Google Scholar 

  73. Chaturvedi P, Wu W, Logeeswaran V J, et al. A smooth optical superlens. Appl Phys Lett, 2010, 96: 043102

    Article  ADS  Google Scholar 

  74. Yan Y, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano, 2014, 8: 1809–1816

    Article  Google Scholar 

  75. Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics, 2009, 3: 144–147

    Article  ADS  Google Scholar 

  76. Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater, 2012, 11: 432–435

    Article  ADS  Google Scholar 

  77. Wang Z, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun, 2011, 2: 218

    Article  ADS  Google Scholar 

  78. Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, et al. Light passing through subwavelength apertures. Rev Mod Phys, 2010, 82: 729–787

    Article  ADS  Google Scholar 

  79. Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett, 2012, 12: 6223–6229

    Article  ADS  Google Scholar 

  80. Pors A, Nielsen M G, Bozhevolnyi S I. Analog computing using reflective plasmonic metasurfaces. Nano Lett, 2015, 15: 791–797

    Article  ADS  Google Scholar 

  81. Aieta F, Genevet P, Kats M, et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express, 2013, 21: 31530–31539

    Article  ADS  Google Scholar 

  82. Pu M, Chen P, Wang C, et al. Broadband anomalous reflection based on low-Q gradient meta-surface. AIP Adv, 2013, 3: 052136

    Article  ADS  Google Scholar 

  83. Di Francia G T. Super-gain antennas and optical resolving power. G Suppl Nuovo Cim, 1952, 9: 426–438

    Article  Google Scholar 

  84. Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: Cambridge University Press, 1999

    Book  Google Scholar 

  85. Canales V F, de Juana D M, Cagigal M P. Superresolution in compensated telescopes. Opt Lett, 2004, 29: 935–937

    Article  ADS  Google Scholar 

  86. Land E H. Polarizing refracting bodies. US Patent, 1933, 1918848

    Google Scholar 

  87. Ma X, Pan W, Huang C, et al. An active metamaterial for polarization manipulating. Adv Opt Mater, 2014, 2: 945–949

    Article  Google Scholar 

  88. Robbie K, Brett M J, Lakhtakia A. Chiral sculptured thin films. Nature, 1996, 384: 616

    Article  ADS  Google Scholar 

  89. Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325: 1513–1515

    Article  ADS  Google Scholar 

  90. Lerosey G, de Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal. Science, 2007, 315: 1120–1122

    Article  ADS  Google Scholar 

  91. Woltersdorff W. Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Z Für Phys Hadrons Nucl, 1934, 91: 230–252

    Article  Google Scholar 

  92. Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section, 2nd ed. USA: SciTech Publishing, 2004

    Google Scholar 

  93. Salisbury W W. Absorbent body for electromagnetic waves. US Patent, 1952: 2599944

    Google Scholar 

  94. Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber. Phys Rev Lett, 2008, 100: 207402

    Article  ADS  Google Scholar 

  95. Hu C, Zhao Z, Chen X, et al. Realizing near-perfect absorption at visible frequencies. Opt Express, 2009, 17: 11039–11044

    Article  ADS  Google Scholar 

  96. Pu M, Wang M, Hu C, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt Express, 2012, 20: 25513–25519

    Article  ADS  Google Scholar 

  97. Planck M, Masius M. The Theory of Heat Radiation. Philadelphia: P. Blakiston’s Son & Co. 1914

    Google Scholar 

  98. Chong Y D, Ge L, Cao H, et al. Coherent perfect absorbers: Time-reversed lasers. Phys Rev Lett, 2010, 105: 053901

    Article  ADS  Google Scholar 

  99. Pu M, Feng Q, Hu C, et al. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7: 733–738

    Article  Google Scholar 

  100. Wan W, Chong Y, Ge L, et al. Time-reversed lasing and interferometric control of absorption. Science, 2011, 331: 889–892

    Article  ADS  Google Scholar 

  101. Chen P Y, Argyropoulos C, Alù A. Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys Rev Lett, 2013, 111: 233001

    Article  ADS  Google Scholar 

  102. Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86: 1391

    Article  ADS  Google Scholar 

  103. Xiong H, Si L. Review of cavity optomechanics in the weakcoupling regime: From linearization to intrinsic nonlinear interactions. Sci China-Phys Mech Astron, 2015, 58: 050302

    Article  Google Scholar 

  104. Boardman A D, Grimalsky V V, Kivshar Y S, et al. Active and tunable metamaterials. Laser Photonics Rev, 2011, 5: 287–307

    Article  Google Scholar 

  105. Chen H-T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices. Nature, 2006, 444: 597–600

    Article  ADS  Google Scholar 

  106. Wu X, Hu C, Wang Y, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv, 2013, 3: 022114

    Article  ADS  Google Scholar 

  107. Lee J, Jung S, Chen P-Y, et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv Opt Mater, 2014, 2: 1057–1063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianGang Luo.

Additional information

Recommended by HONG MingHui (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015). https://doi.org/10.1007/s11433-015-5688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5688-1

Keywords

Navigation