Skip to main content
Log in

An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of LiCoO2 cathode

  • Articles
  • Physical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

The storage behavior and process of the first delithiation-lithiation of LiCoO2 cathode were investigated by electrochemical impedance spectroscopy (EIS). The electronic and ionic transport properties of LiCoO2 cathode along with variation of electrode potential were obtained in 1 mol·L−1 LiPF6-EC:DMC: DEC electrolyte solution. It was found that after 9 h storage of the LiCoO2 cathode in electrolyte solutions, a new arc appears in the medium frequency range in Nyquist plots of EIS, which increases with increasing the storage time. In the charge/discharge processes, the diameter of the new arc is reversibly changed with electrode potential. Such variation coincides well with the electrode potential dependence of electronic conductivity of the LiCoO2. Thus this new EIS feature is attributed to the change of electronic conductivity of Li x CoO2 during storage of the LiCoO2 cathode in electrolyte solutions, as well as in processes of intercalation-deintercalationtion of lithium ions. It has been revealed that the reversible increase and decrease of the resistance of SEI film in charge-discharge processes can be also ascribed to the variation of electronic conductance of active materials of the LiCoO2 cathode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson B A, White R E. Characterization commercially available lithium-ion batteries. J Power Sources, 1998, 70: 48–54

    Article  CAS  Google Scholar 

  2. Antolini E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics, 2004, 170: 159–171

    Article  CAS  Google Scholar 

  3. Chen Z, Dahn J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochimica Acta, 2004, 49: 1079–1090

    Article  CAS  Google Scholar 

  4. Shibubuya M, Nishina T, Matsue T, et al. In situ conductivity measurements of LiCoO2 film during insertion/extraction by using interdigitated microarray electrodes. J Electrochem Soc, 1996, 143: 3157–3160

    Article  Google Scholar 

  5. Tukamoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc, 1997, 144: 3164–3168.

    Article  CAS  Google Scholar 

  6. Lala S M, Montoro L A, Lemos V, et al. The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO2. Electrochimica Acta, 2005, 51: 7–13

    Article  CAS  Google Scholar 

  7. Cao H, Xia B, Zhang Y, et al. LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics, 2005, 176: 911–914

    Article  CAS  Google Scholar 

  8. Ceder G, Van der Ven A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochimica Acta, 1999, 45: 131–150

    Article  CAS  Google Scholar 

  9. Van der Ven A, Aydinol M K, Ceder G, et al. First-principles investigation of phase stability in Li x CoO2. Phys Review B, 1998, 58(6): 2975–2987

    Article  ADS  Google Scholar 

  10. van Elp J, Wieland J L, Eskes H, et al. Electronic structure of CoO, Li-doped CoO and LiCoO2. Phys Review B, 1991, 44(12): 6090–6103

    Article  ADS  Google Scholar 

  11. Thomas M G S R, Bruce P G, Goodenough J B. AC impedance analysis of polycrystalline insertion electrodes: Application to Li1−x CoO2. J Electrochem Soc, 1985, 132(7): 1521–1528

    Article  CAS  Google Scholar 

  12. Gnanaraj J S, Cohen Y S, Levi M D, et al. The effect of pressure on the electroanalytical response of graphite anodes and LiCoO2 cathodes for Li-ion batteries. J Electroanal Chem, 2001, 516: 89–102

    Article  CAS  Google Scholar 

  13. Levi M D, Gamolsky K, Aurbach D, et al. On electrochemical impedance measurements of Li x Co0.2Ni0.8O2 and Li x NiO2 intercalation electrodes. Electrochimica Acta, 2000, 45: 1781–1789

    Article  CAS  Google Scholar 

  14. Aurbach D, Markovsky B, Levi M D, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources, 1999, 81–82: 95–111

    Article  Google Scholar 

  15. Levi M D, Salitra G, Markovsky B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1−x CoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc, 1999, 146: 1279–1289

    Article  CAS  Google Scholar 

  16. Nobili F, Dsoke S, Corce F, et al. An ac impedance spectroscopy study of Mg-doped LiCoO2 at different temperatures: electronic and ionic transport properties. Electrochimica Acta, 2005, 50: 2307–2313

    Article  CAS  Google Scholar 

  17. Nobili F, Tossici R, Croce F, et al. An electrochemical ac impedance study of Li x Ni0.75Co0.25O2 intercalation electrode. J Power Sources, 2001, 94: 238–241

    Article  CAS  Google Scholar 

  18. Nobili F, Tossici R, Marassi R, et al. An ac impedance study of Li x CoO2 at different temperatures. J Phys Chem B, 2002, 106: 3909–3915

    Article  CAS  Google Scholar 

  19. Croce F, Nobili F, Deptula A, et al. An electrochemical impedance study of the transport properties of LiNi0.75Co0.25O2. Electrochem Commun, 1999, 1: 605–608

    Article  CAS  Google Scholar 

  20. Nobili F, Croce F, Scrosati B, et al. Electronic and electrochemical properties of Li x Ni1−y CoO2 cathodes studied by impedance spectroscopy. Chem Mater, 2001, 13: 1642–1646

    Article  CAS  Google Scholar 

  21. Nobili F, Dsoke S, Minicucci M, et al. Correlation of ac-impedance and in-situ X-ray spectra of LiCoO2. J Phys Chem B, 2006, 110(23): 11310–11313

    Article  PubMed  CAS  Google Scholar 

  22. Wang Z, Huang X, Chen L. Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithium-ion batteries. J Electrochem Soc, 2004, 151: A1641–A1652

    Article  CAS  Google Scholar 

  23. Wang Z, Chen L. Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries. J Power Sources, 2005, 146: 254–258

    Article  CAS  Google Scholar 

  24. Liu N, Li H, Wang Z, et al. Origin of solid electrolyte interphase on nanosized LiCoO2. Electrochem Solid-State Lett, 2006, 9(7): A328–A331

    Article  CAS  Google Scholar 

  25. Julien C M. Lithium intercalated compounds charge transfer and related properties. Materials Sci Engin R, 2003, 40: 47–102

    Article  Google Scholar 

  26. Marianetti C A. Electronic correlations in Li x CoO2. Doctor Dissertation. Cambridge: Massachusetts Institute of Technology, 2004. 51–83

    Google Scholar 

  27. Van der Ven A. First principles investigation of the thermodynamic and kinetic properties of lithium transition metal oxides. Doctor Dissertation. Cambridge: Massachusetts Institute of Technology, 2000. 46–76

    Google Scholar 

  28. Levi M D, Aurbach D. Frumkin intercalation isotherm—A tool for the description of lithium insertion into host materials: a review. Electrochimica Acta, 1999, 45: 167–185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun ShiGang.

Additional information

Supported by the Special Funds for Major State Basic Research Project of China (Grant No. 2002CB211804)

About this article

Cite this article

Zhuang, Q., Xu, J., Fan, X. et al. An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of LiCoO2 cathode. CHINESE SCI BULL 52, 1187–1195 (2007). https://doi.org/10.1007/s11434-007-0169-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0169-1

Keywords

Navigation