Skip to main content
Log in

Evolution of Coronal Mass Ejections and the Corresponding Forbush Decreases: Modeling vs. Multi-Spacecraft Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

One of the very common in situ signatures of interplanetary coronal mass ejections (ICMEs), as well as other interplanetary transients, are Forbush decreases (FDs), i.e. short-term reductions in the galactic cosmic ray (GCR) flux. A two-step FD is often regarded as a textbook example, which presumably owes its specific morphology to the fact that the measuring instrument passed through the ICME head on, encountering first the shock front (if developed), then the sheath, and finally the CME magnetic structure. The interaction of GCRs and the shock/sheath region, as well as the CME magnetic structure, occurs all the way from Sun to Earth, therefore, FDs are expected to reflect the evolutionary properties of CMEs and their sheaths. We apply modeling to different ICME regions in order to obtain a generic two-step FD profile, which qualitatively agrees with our current observation-based understanding of FDs. We next adapt the models for energy dependence to enable comparison with different GCR measurement instruments (as they measure in different particle energy ranges). We test these modeling efforts against a set of multi-spacecraft observations of the same event, using the Forbush decrease model for the expanding flux rope (ForbMod). We find a reasonable agreement of the ForbMod model for the GCR depression in the CME magnetic structure with multi-spacecraft measurements, indicating that modeled FDs reflect well the CME evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., et al.: 2011, PAMELA measurements of cosmic-ray proton and helium spectra. Science332(6025), 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aguilar, M., Alberti, G., Alpat, B., Alvino, A., Ambrosi, G., Andeen, K., et al.: 2013, First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV. Phys. Rev. Lett.110(14), 141102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Al-Haddad, N., Poedts, S., Roussev, I., Farrugia, C.J., Yu, W., Lugaz, N.: 2019, The magnetic morphology of magnetic clouds: multi-spacecraft investigation of twisted and writhed coronal mass ejections. Astrophys. J.870(2), 100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Alania, M.V., Wawrzynczak, A., Sdobnov, V.E., Kravtsova, M.V.: 2013, Temporal changes in the rigidity spectrum of Forbush decreases based on neutron monitor data. Solar Phys.286, 561. DOI. ADS.

    Article  ADS  Google Scholar 

  • Anderson, B.J., Acuña, M.H., Lohr, D.A., Scheifele, J., Raval, A., Korth, H., Slavin, J.A.: 2007, The magnetometer instrument on MESSENGER. Space Sci. Rev.131(1-4), 417. DOI. ADS.

    Article  ADS  Google Scholar 

  • Asvestari, E., Gil, A., Kovaltsov, G.A., Usoskin, I.G.: 2017, Neutron monitors and cosmogenic isotopes as cosmic ray energy-integration detectors: effective yield functions, effective energy, and its dependence on the local interstellar spectrum. J. Geophys. Res.122(10), 9790. DOI. ADS.

    Article  Google Scholar 

  • Barnden, L.R.: 1973, The large-scale magnetic field configuration associated with Forbush decreases. Int. Cosmic Ray Conf.2, 1277. ADS.

    ADS  Google Scholar 

  • Belov, A.V.: 2009, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp.257, 439. DOI. ADS.

    Chapter  Google Scholar 

  • Belov, A.V., Dorman, L.I., Eroshenko, E.A., Iucci, N., Villoresi, G., Yanke, V.G.: 1995, Search for predictors of Forbush decreases. Int. Cosmic Ray Conf.4, 888. ADS.

    Google Scholar 

  • Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H.: 2015, Galactic cosmic ray density variations in magnetic clouds. Solar Phys.290, 1429. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benella, S., Grimani, C., Laurenza, M., Consolini, G.: 2019, Grad–Shafranov reconstruction of a magnetic cloud: effects of the magnetic-field topology on the galactic cosmic-ray intensity. Nuovo Cimento, C Geophys. Space Phys.42(1), 44. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys.16, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burlaga, L., Berdichevsky, D., Gopalswamy, N., Lepping, R., Zurbuchen, T.: 2003, Merged interaction regions at 1 AU. J. Geophys. Res.108, 1425. DOI. ADS.

    Article  Google Scholar 

  • Caballero-Lopez, R.A., Moraal, H.: 2004, Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res.109, 1101. DOI. ADS.

    Article  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev.93, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1995, The response of energetic particles to the presence of ejecta material. Int. Cosmic Ray Conf.4, 377. ADS.

    Google Scholar 

  • Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1996, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res.101, 4855. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chih, P.P., Lee, M.A.: 1986, A perturbation approach to cosmic ray transients in interplanetary space. J. Geophys. Res.91, 2903. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clem, J.M., Dorman, L.I.: 2000, Neutron monitor response functions. Space Sci. Rev.93, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Corti, C., Potgieter, M.S., Bindi, V., Consolandi, C., Light, C., Palermo, M., Popkow, A.: 2019, Numerical modeling of galactic cosmic-ray proton and helium observed by AMS-02 during the solar maximum of Solar Cycle 24. Astrophys. J.871(2), 253. DOI. ADS.

    Article  ADS  Google Scholar 

  • Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys.498(2), 551. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys.250, 347. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dissauer, K., Veronig, A.M., Temmer, M., Podladchikova, T., Vanninathan, K.: 2018, On the detection of coronal dimmings and the extraction of their characteristic properties. Astrophys. J.855(2), 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys.531, A91+. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys.538, A28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dumbović, M., Heber, B., Vršnak, B., Temmer, M., Kirin, A.: 2018, An analytical diffusion-expansion model for Forbush decreases caused by flux ropes. Astrophys. J.860, 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dumbović, M., Guo, J., Temmer, M., Mays, M.L., Veronig, A., Heinemann, S.G., et al.: 2019, Unusual plasma and particle signatures at Mars and STEREO-a related to CME–CME interaction. Astrophys. J.880, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Freiherr von Forstner, J.L., Guo, J., Wimmer-Schweingruber, R.F., Hassler, D.M., Temmer, M., Dumbović, M., et al.: 2018, Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars. J. Geophys. Res.123, 39. DOI. ADS.

    Article  Google Scholar 

  • Freiherr von Forstner, J.L., Guo, J., Wimmer-Schweingruber, R.F., Temmer, M., Dumbović, M., Veronig, A., Möstl, C., Hassler, D.M., Zeitlin, C.J., Ehresmann, B.: 2019, Tracking and validating ICMEs propagating toward Mars using STEREO heliospheric imagers combined with Forbush decreases detected by MSL/RAD. Space Weather17(4), 586. DOI. ADS.

    Article  ADS  Google Scholar 

  • Freiherr von Forstner, J.L., Guo, J., Wimmer-Schweingruber, R.F., Dumbović, M., Janvier, M., Démoulin, P., Veronig, A., Temmer, M., Papaioannou, A., Dasso, S., Hassler, D.M., Zeitlin, C.J.: 2020, Comparing the properties of ICME-induced Forbush decreases at Earth and Mars. J. Geophys. Res.125(3), e27662. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gieseler, J., Heber, B.: 2016, Spatial gradients of GCR protons in the inner heliosphere derived from Ulysses COSPIN/KET and PAMELA measurements. Astron. Astrophys.589, A32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gieseler, J., Heber, B., Herbst, K.: 2017, An empirical modification of the force field approach to describe the modulation of galactic cosmic rays close to Earth in a broad range of rigidities. J. Geophys. Res.122(11), 10,964. DOI. ADS.

    Article  Google Scholar 

  • Gleeson, L.J., Axford, W.I.: 1968, Solar modulation of galactic cosmic rays. Astrophys. J.154, 1011. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gleeson, L.J., Urch, I.H.: 1971, Energy losses and modulation of galactic cosmic rays. Astrophys. Space Sci.11, 288. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev.86, 497. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc.120, 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goldsten, J.O., Rhodes, E.A., Boynton, W.V., Feldman, W.C., Lawrence, D.J., Trombka, J.I., et al.: 2007, The MESSENGER gamma-ray and neutron spectrometer. Space Sci. Rev.131(1-4), 339. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D., Smith, E.J.: 1987, Bidirectional solar wind electron heat flux events. J. Geophys. Res.92(A8), 8519. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grotzinger, J.P., Crisp, J., Vasavada, A.R., Anderson, R.C., Baker, C.J., Barry, R., et al.: 2012, Mars science laboratory mission and science investigation. Space Sci. Rev.170, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L.: 2012, Expansion of magnetic clouds in the outer heliosphere. Astron. Astrophys.543, A107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, J., Dumbović, M., Wimmer-Schweingruber, R.F., Temmer, M., Lohf, H., Wang, Y., et al.: 2018b, Modeling the evolution and propagation of 10 September 2017 CMEs and SEPs arriving at Mars constrained by remote sensing and in situ measurement. Space Weather16, 1156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, J., Zeitlin, C., Wimmer-Schweingruber, R.F., McDole, T., Kühl, P., Appel, J.C., Matthiä, D., Krauss, J., Köhler, J.: 2018a, A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars. Astron. J.155(1), 49. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, J., Wimmer-Schweingruber, R.F., Dumbović, M., Heber, B., Wang, Y.: 2020, A new model describing Forbush decreases at Mars: combining the heliospheric modulation and the atmospheric influence. Earth Planet. Phys.4(1), 62. DOI. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.26464/epp2020007.

    Article  Google Scholar 

  • Hassler, D.M., Zeitlin, C., Wimmer-Schweingruber, R.F., Böttcher, S., Martin, C., Andrews, J., et al.: 2012, The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev.170, 503. DOI. ADS.

    Article  ADS  Google Scholar 

  • Herbst, K., Kopp, A., Heber, B., Steinhilber, F., Fichtner, H., Scherer, K., Matthiä, D.: 2010, On the importance of the local interstellar spectrum for the solar modulation parameter. J. Geophys. Res.115, D00I20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev.136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res.107(A7), 1142. DOI. ADS.

    Article  Google Scholar 

  • Hu, Q., Linton, M.G., Wood, B.E., Riley, P., Nieves-Chinchilla, T.: 2017, The Grad–Shafranov reconstruction of toroidal magnetic flux ropes: first applications. Solar Phys.292(11), 171. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Acton, L.W., Freeland, S.L.: 1996, A long-duration solar flare with mass ejection and global consequences. Astrophys. J.470, 629. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jämsén, T., Usoskin, I.G., Räihä, T., Sarkamo, J., Kovaltsov, G.A.: 2007, Case study of Forbush decreases: energy dependence of the recovery. Adv. Space Res.40, 342. DOI. ADS.

    Article  ADS  Google Scholar 

  • Janvier, M., Winslow, R.M., Good, S., Bonhomme, E., Démoulin, P., Dasso, S., Möstl, C., Lugaz, N., Amerstorfer, T., Soubrié, E., Boakes, P.D.: 2019, Generic magnetic field intensity profiles of interplanetary coronal mass ejections at Mercury, Venus, and Earth from superposed epoch analyses. J. Geophys. Res.124(2), 812. DOI. ADS.

    Article  Google Scholar 

  • Jokipii, J.R.: 1971, Propagation of cosmic rays in the solar wind. Rev. Geophys. Space Phys.9, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kalugin, G., Kabin, K.: 2015, Estimation of index of power law rigidity spectrum of cosmic rays using effective rigidity of multidirectional muon detector. Earth Planets Space67, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I.: 2017, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys.14, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kirin, A., Vršnak, B., Dumbović, M., Heber, B.: 2020, On the interaction of galactic cosmic rays with heliospheric shocks during Forbush decreases. Solar Phys.295, 28. DOI.

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res.87(A2), 613. DOI. ADS.

    Article  ADS  Google Scholar 

  • Koldobskiy, S.A., Kovaltsov, G.A., Mishev, A.L., Usoskin, I.G.: 2019, New method of assessment of the integral fluence of solar energetic (> 1 GV rigidity) particles from neutron monitor data. Solar Phys.294(7), 94. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krittinatham, W., Ruffolo, D.: 2009, Drift orbits of energetic particles in an interplanetary magnetic flux rope. Astrophys. J.704, 831. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kühl, P., Banjac, S., Heber, B., Labrenz, J., Müller-Mellin, R., Terasa, C.: 2015, Extended Measurement Capabilities of the Electron Proton Helium INstrument aboard SOHO – understanding single detector count rates. Cent. Eur. Astrophys. Bull.39, 119. ADS.

    ADS  Google Scholar 

  • Lawrence, D.J., Peplowski, P.N., Feldman, W.C., Schwadron, N.A., Spence, H.E.: 2016, Galactic cosmic ray variations in the inner heliosphere from solar distances less than 0.5 AU: measurements from the MESSENGER neutron spectrometer. J. Geophys. Res.121, 7398. DOI. ADS.

    Article  Google Scholar 

  • Le Roux, J.A., Potgieter, M.S.: 1991, The simulation of Forbush decreases with time-dependent cosmic-ray modulation models of varying complexity. Astron. Astrophys.243, 531. ADS.

    ADS  Google Scholar 

  • Leitner, M., Farrugia, C.J., MöStl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K.: 2007, Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res.112, A06113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev.71, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res.106(A12), 29231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lingri, D., Mavromichalaki, H., Belov, A., Abunina, M., Eroshenko, E., Abunin, A.: 2019, An extended study of the precursory signs of Forbush decreases: new findings over the years 2008 – 2016. Solar Phys.294(6), 70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lockwood, J.A.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev.12, 658. DOI.

    Article  ADS  Google Scholar 

  • Lockwood, J.A., Webber, W.R., Jokipii, J.R.: 1986, Characteristic recovery times of Forbush-type decreases in the cosmic radiation. I – observations at Earth at different energies. J. Geophys. Res.91, 2851. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lopez, R.E.: 1987, Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res.92(A10), 11189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lugaz, N., Winslow, R.M., Farrugia, C.J.: 2020, Evolution of a long-duration coronal mass ejection and its sheath region between Mercury and Earth on 9 – 14 July 2013. J. Geophys. Res.125(1), e27213. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: a review. Solar Phys.292, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1951, On the stability of magneto-hydrostatic fields. Phys. Rev.83, 307. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys.434(2), 725. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masías-Meza, J.J., Dasso, S., Démoulin, P., Rodriguez, L., Janvier, M.: 2016, Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays. Astron. Astrophys.592, A118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mishev, A.L., Koldobskiy, S.A., Kovaltsov, G.A., Gil, A., Usoskin, I.G.: 2020, Updated neutron-monitor yield function: bridging between in situ and ground-based cosmic ray measurements. J. Geophys. Res.125(2), e27433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moraal, H.: 2013, Cosmic-ray modulation equations. Space Sci. Rev.176, 299. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moraal, H., Belov, A., Clem, J.M.: 2000, Design and co-ordination of multi-station international neutron monitor networks. Space Sci. Rev.93, 285. DOI. ADS.

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009, Optimized Grad–Shafranov reconstruction of a magnetic cloud using STEREO- wind observations. Solar Phys.256(1-2), 427. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller-Mellin, R., Kunow, H., Fleißner, V., Pehlke, E., Rode, E., Röschmann, N., et al.: 1995, COSTEP – comprehensive suprathermal and energetic particle analyser. Solar Phys.162, 483. DOI. ADS.

    Article  ADS  Google Scholar 

  • Munakata, K., Yasue, S., Kato, C., Kota, J., Tokumaru, M., Kojima, M., Darwish, A.A., Kuwabara, T., Bieber, J.W.: 2006, On the cross-field diffusion of galactic cosmic rays into an ICME. Adv. Geosciences ST2, 115. DOI. ADS.

    Article  Google Scholar 

  • Munini, R., Boezio, M., Bruno, A., Christian, E.C., de Nolfo, G.A., Di Felice, V., et al.: 2018, Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA experiment. Astrophys. J.853(1), 76. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-haddad, N., Savani, N.P., Szabo, A., Hidalgo, M.A.: 2018, Understanding the internal magnetic field configurations of ICMEs using more than 20 years of wind observations. Solar Phys.293(2), 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., et al.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev.71, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Owens, M.J., Cargill, P.J., Pagel, C., Siscoe, G.L., Crooker, N.U.: 2005, Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res.110(A1), A01105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Papailiou, M., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V.: 2012, Precursor effects in different cases of Forbush decreases. Solar Phys.276(1-2), 337. DOI. ADS.

    Article  ADS  Google Scholar 

  • Papaioannou, A., et al.: 2019, A catalogue of Forbush decreases recorded on the surface of Mars from 2012 until 2016: comparison with terrestrial FDs. Solar Phys.294, 66.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1965, The passage of energetic charged particles through interplanetary space. Planet. Space Sci.13, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Paularena, K.I., Wang, C., von Steiger, R., Heber, B.: 2001, An ICME observed by Voyager 2 at 58 AU and by Ulysses at 5 AU. Geophys. Res. Lett.28(14), 2755. DOI. ADS.

    Article  ADS  Google Scholar 

  • Penna, R.F., Quillen, A.C.: 2005, Decay of interplanetary coronal mass ejections and Forbush decrease recovery times. J. Geophys. Res.110(A9), 9. DOI. ADS.

    Article  Google Scholar 

  • Petukhova, A.S., Petukhov, I.S., Petukhov, S.I.: 2019a, Image of Forbush decrease in a magnetic cloud by three moments of cosmic ray distribution function. J. Geophys. Res.124(1), 19. DOI. ADS.

    Article  Google Scholar 

  • Petukhova, A.S., Petukhov, I.S., Petukhov, S.I.: 2019b, Theory of the formation of Forbush decrease in a magnetic cloud: dependence of Forbush decrease characteristics on magnetic cloud parameters. Astrophys. J.880(1), 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pinter, S.: 1980, The thickness of interplanetary collisionless shock waves. Bull. Astron. Inst. Czechoslov.31, 368. ADS.

    ADS  Google Scholar 

  • Potgieter, M.S.: 2013, Solar modulation of cosmic rays. Living Rev. Solar Phys.10, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Potgieter, M.S., Vos, E.E., Boezio, M., De Simone, N., Di Felice, V., Formato, V.: 2014, Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Solar Phys.289, 391. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev.111, 267. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res.100(A12), 23397. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys.264, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2011a, Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995 – 2009. Solar Phys.270, 609. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2011b, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting. Space Weather9, 7005. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rodari, M., Dumbović, M., Temmer, M., Holzknecht, L., Veronig, A.: 2018, 3D reconstruction and interplanetary expansion of the 2010 April \(3\mathrm{rd}\) CME. Cent. Eur. Astrophys. Bull.42, 11. ADS.

    ADS  Google Scholar 

  • Rouillard, A.P.: 2011, Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Solar-Terr. Phys.73, 1201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Russell, C.T., Mulligan, T.: 2002, On the magnetosheath thicknesses of interplanetary coronal mass ejections. Planet. Space Sci.50, 527. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scolini, C., Chané, E., Temmer, M., Kilpua, E.K.J., Dissauer, K., Veronig, A.M., Palmerio, E., Pomoell, J., Dumbović, M., Guo, J., Rodriguez, L., Poedts, S.: 2020, CME–CME interactions as sources of CME geoeffectiveness: the formation of the complex ejecta and intense geomagnetic storm in 2017 early September. Astrophys. J. Suppl.247(1), 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spence, H.E., Case, A.W., Golightly, M.J., Heine, T., Larsen, B.A., Blake, J.B., et al.: 2010, CRaTER: the Cosmic Ray Telescope for the Effects of Radiation experiment on the Lunar Reconnaissance Orbiter mission. Space Sci. Rev.150(1-4), 243. DOI. ADS.

    Article  ADS  Google Scholar 

  • Subramanian, P., Antia, H.M., Dugad, S.R., Goswami, U.D., Gupta, S.K., Hayashi, Y., et al.: 2009, Forbush decreases and turbulence levels at coronal mass ejection fronts. Astron. Astrophys.494, 1107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sullivan, J.D.: 1971, Geometric factor and directional response of single and multi-element particle telescopes. Nucl. Instrum. Methods95(1), 5. DOI.

    Article  ADS  Google Scholar 

  • Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl.194, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J.652, 763. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys.256, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tortermpun, U., Ruffolo, D., Bieber, J.W.: 2018, Galactic cosmic-ray anistropy during the Forbush decrease starting 2013 April 13. Astrophys. J. Lett.852(2), L26. DOI. ADS.

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Bazilevskaya, G.A., Kovaltsov, G.A.: 2011, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res.116, 2104. DOI. ADS.

    Article  Google Scholar 

  • Usoskin, I.G., Braun, I., Gladysheva, O.G., HöRand el, J.R., JäMséN, T., Kovaltsov, G.A., Starodubtsev, S.A.: 2008, Forbush decreases of cosmic rays: energy dependence of the recovery phase. J. Geophys. Res.113(A7), A07102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Kovaltsov, G.A., Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., et al.: 2015, Force-field parameterization of the galactic cosmic ray spectrum: validation for Forbush decreases. Adv. Space Res.55, 2940. DOI. ADS.

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Gil, A., Kovaltsov, G.A., Mishev, A.L., Mikhailov, V.V.: 2017, Heliospheric modulation of cosmic rays during the neutron monitor era: calibration using PAMELA data for 2006 – 2010. J. Geophys. Res.122(4), 3875. DOI. ADS.

    Article  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys.285, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Amerstorfer, T., Dumbović, M., Leitner, M., Veronig, A.M., Temmer, M., Möstl, C., Amerstorfer, U.V., Farrugia, C.J., Galvin, A.B.: 2019, Heliospheric evolution of magnetic clouds. Astrophys. J.877(2), 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wawrzynczak, A., Alania, M.V.: 2010, Modeling and data analysis of a Forbush decrease. Adv. Space Res.45, 622. DOI. ADS.

    Article  ADS  Google Scholar 

  • Webber, W.R., Lockwood, J.A.: 1999, A new look at the <70 Mev cosmic ray radial gradients in the heliosphere measured by spacecraft. J. Geophys. Res.104, 2487. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wibberenz, G., Cane, H.V., Richardson, I.G.: 1997, Two-step Forbush decreases in the inner solar system and their relevance for models of transient disturbances. Int. Cosmic Ray Conf.1, 397. ADS.

    Google Scholar 

  • Wibberenz, G., Le Roux, J.A., Potgieter, M.S., Bieber, J.W.: 1998, Transient effects and disturbed conditions. Space Sci. Rev.83, 309. ADS.

    ADS  Google Scholar 

  • Winslow, R.M., Schwadron, N.A., Lugaz, N., Guo, J., Joyce, C.J., Jordan, A.P., Wilson, J.K., Spence, H.E., Lawrence, D.J., Wimmer-Schweingruber, R.F., Mays, M.L.: 2018, Opening a window on ICME-driven GCR modulation in the inner solar system. Astrophys. J.856, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Witasse, O., Sánchez-Cano, B., Mays, M.L., Kajdič, P., Opgenoorth, H., Elliott, H.A., et al.: 2017, Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. J. Geophys. Res.122, 7865. DOI. ADS.

    Article  Google Scholar 

  • Zhang, T.L., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A., Russell, C.T., et al.: 2006, Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet. Space Sci.54(13-14), 1336. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, L.-L., Zhang, H.: 2016, Transient galactic cosmic-ray modulation during Solar Cycle 24: a comparative study of two prominent Forbush decrease events. Astrophys. J.827(1), 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Weberg, M., von Steiger, R., Mewaldt, R.A., Lepri, S.T., Antiochos, S.K.: 2016, Composition of coronal mass ejections. Astrophys. J.826(1), 10. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 745782 (ForbMod). B.V. and M.D. acknowledge a support by the Croatian Science Foundation under the project 7549 (MSOC). J.G. acknowledge the Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000 and XDA15017300) and the CNSA pre-research Project on Civil Aerospace Technologies (Grant No. D020104). B. H. acknowledges the discussions from the HEROIC team at the International Space Science Institute. K.D. and A.M.V. acknowledge funding by the Austrian Space Applications Programme of the Austrian Research Promotion Agency FFG: projects ASAP-11 4900217 and ASAP-14 865972. F.C. acknowledges the financial support by MINECO-FPI-2016 predoctoral grant with FSE, and its project FEDER/MCIU-AEEI/Proyecto ESP2017-88436-R. C.M. and T.A. thank the Austrian Science Fund (FWF): P31659-N27, P31521-N27, P31265-N27. We acknowledge the NMDB database (http://www.nmdb.eu) founded under the European Unions FP7 programme (contract No. 213007), and the PIs of individual neutron monitors for providing SoPo data. MESSENGER and MSL data are available on the Planetary Data System (https://pds.jpl.nasa.gov). SOHO/EPHIN is supported by the Ministry of Economics via DLR grant 50OG1702. We thank Ewan Dickson, PhD, for improving the readability of the paper. Finally, we thank the anonymous reviewer whose thorough revision and insightful comments significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Dumbović.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Towards Future Research on Space Weather Drivers

Guest Editors: Hebe Cremades and Teresa Nieves-Chinchilla

Appendices

Appendix A: Diffusion Coefficient

In order to introduce energy dependence we allow the diffusion coefficient, \(D\), to be a function of rigidity as well as of time, which can be expressed through an empirical formula as used in numerical models fitted to GCR measurements, as given by Potgieter (2013):

$$ D_{E}(P)=0.02\cdot 10^{22}\cdot k_{\mathrm{||},0}\cdot \beta \frac{P^{a}}{B}\Bigg[\frac{P^{c}+(P_{k})^{c}}{1+(P_{k})^{c}}\Bigg]^{( \frac{b-a}{c})}\,, $$
(10)

where \(D_{E}\) is given in units \(\mathrm{cm}^{2}\mathrm{s}^{-1}\), \(P\) is rigidity in units GV, \(B\) is the magnetic field in units nT, and \(k_{\mathrm{||},0}\), \(a\), \(b\), \(c\) and \(P_{k}\) are parameters obtained empirically from the observation of the GCR spectrum using instruments such as Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA: Adriani et al., 2011) onboard the Russian Resurs-DK1 satellite as by (Potgieter et al., 2014) or the Alpha Magnetic Spectrometer (AMS-02: Aguilar et al., 2013) experiment onboard the International Space Station as by, e.g., Corti et al. (2019). We note that the parameters and the dependence in Equation 10 is slightly different for these two studies involving PAMELA and AMS. It should be noted that Potgieter et al. (2014) studied the period of solar minimum 2006 – 2009, whereas Corti et al. (2019) studied the period around and after the solar maximum, 2011 – 2017. It is reasonable to assume that the perpendicular diffusion coefficient changes periodically with time (i.e. solar activity) not only due to the change of the interplanetary magnetic field (IMF) strength, but also the time-varying orientation and complexity of the IMF, closely related to the time-varying speeds and densities of the solar wind and reflected in the change of the parameters in Equation 10. In Figure 10a we combine the results for the perpendicular diffusion coefficient at Earth, \(D_{E}\), calculated based on Potgieter et al. (2014) and Corti et al. (2019) for magnetic field strength \(B=5\) nT and rigidity \(P=1\) GV, where it can be seen that the resulting \(D_{E}\) varies periodically in rough anti-correlation to the solar activity indicating that the two empirical formulas corresponding to these two different time-periods can be combined. These two studies therefore provide a calculating frame for the energy-dependent diffusion coefficients. In Figure 10b we show the rigidity dependence of the diffusion coefficient at Earth in 2014 calculated in this way, as well as the rigidity dependence of the initial diffusion coefficient, estimated at \(R_{0}=15\mathrm{R_{SUN}}\) based on \(D_{0}=D(R(t)/R_{0})^{-n_{B}}\) assuming a magnetic field expansion factor \(n_{B}=1.8\).

Figure 10
figure 10

a) Perpendicular diffusion coefficient at Earth calculated based on Potgieter et al. (2014) for 2006 – 2009 and Corti et al. (2019) for 2011 – 2016 (extrapolated to 2010) for magnetic field strength \(B=5\) nT and rigidity \(P=1\) GV. b) Rigidity dependence of the diffusion coefficient in 2014 at Earth and at \(R_{0}=15~\mathrm{R}_{\odot }\).

Appendix B: The GCR Spectral Intensity

The ‘force–field’ approximation is used to describe the long-term GCR modulation and is typically valid for quiet-time periods. However, Usoskin et al. (2015) have shown that the same approximation can be used to describe the GCR spectrum during an FD. In this approximation all GCR modulation mechanisms are gathered into a single parameter called the modulation potential, \(\Phi \), which influences the unmodulated local interstellar spectrum, \(J_{\mathrm{LIS}}\), to yield the time-dependent differential energy spectrum of GCRs as observed near Earth:

$$ J(E,\Phi )=J_{\mathrm{LIS}}(E+\Phi ) \frac{(E)(E+2m_{0})}{(E+\Phi )(E+\Phi +2m_{0})}\,, $$
(11)
$$ J_{\mathrm{LIS}}(E)= \frac{1.9\times 10^{4}\cdot P(E)^{-2.78}}{1+0.4866P(E)^{-2.51}}\,, $$
(12)

where we assume all GCRs are protons, \(E\) is their kinetic energy, \(m_{0}\) their rest mass, \(P(E)=\sqrt{E(E+2m_{0})}\) is the rigidity, and \(\Phi \) is the modulation potential which is time-dependent and can be obtained empirically based on GCR measurements (Usoskin, Bazilevskaya, and Kovaltsov, 2011; Usoskin et al., 2017). However, it was shown by Gieseler, Heber, and Herbst (2017) that it is not sufficient to describe GCR intensities at Earth by only one rigidity-independent parameter \(\Phi \), as it also depends on the energy range of interest and there are severe limitations at lower energies. Therefore, we use a modified force field approach by Gieseler, Heber, and Herbst (2017) in which the rigidity-dependent modulation parameter is given by

$$ \Phi (P) = \textstyle\begin{cases} \frac{\Phi _{\mathrm{USO11}}-\Phi _{\mathrm{PP}}}{P_{\mathrm{USO11}}-P_{\mathrm{PP}}} \cdot (P-P_{\mathrm{PP}})+\Phi _{\mathrm{PP}}, P< P_{\mathrm{USO11}} \\ \Phi _{\mathrm{USO11}}, P\ge P_{\mathrm{USO11}} \end{cases} $$
(13)

where \(\Phi _{\mathrm{USO11}}\) is the solar modulation potential obtained for neutron monitors empirically by Usoskin, Bazilevskaya, and Kovaltsov (2011), \(\Phi _{\mathrm{PP}}\) is the solar modulation potential derived from the 1.28 GV proton proxies IMP-8 helium and the ACE/Cosmic Ray Isotope Spectrometer (CRIS) carbon by Gieseler, Heber, and Herbst (2017), and \(P_{\mathrm{USO11}}=13.83\pm 4.39\) GV and \(P_{\mathrm{PP}}=1.28\pm 0.01\) GV are the corresponding mean rigidities. Equations 1113 therefore provide a scheme to calculate GCR spectrum for a given event. We note that for the event presented in Section 4.3 the uncorrected and corrected solar modulation potentials are 0.681 and 0.97 GV, respectively (Gieseler, Heber, and Herbst, 2017).

Appendix C: The SOHO/EPHIN Response Function

In order to obtain an analytical form of the response function of the single detector F of the SOHO/EPHIN instrument, we use the GEometry ANd Tracking (GEANT 4) Monte Carlo simulation of the instrument performed by Kühl et al. (2015) for the omnidirectional isotropic flux of protons, given in Figure 1 of Kühl et al. (2015). The data points representing the GEANT 4 simulation are presented in Figure 11, where a fitting function is applied in order to derive an approximate analytical form of the functional dependency:

$$ R = 6.4\ln ^{3}(E)-0.42\ln ^{2}(E)+36.8\ln (E)+288.8. $$
(14)
Figure 11
figure 11

GEANT 4 Monte Carlo simulation of the response function of the single detector F of the SOHO/EPHIN instrument (black dots) and a fitting function approximating its analytical form (dotted line).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumbović, M., Vršnak, B., Guo, J. et al. Evolution of Coronal Mass Ejections and the Corresponding Forbush Decreases: Modeling vs. Multi-Spacecraft Observations. Sol Phys 295, 104 (2020). https://doi.org/10.1007/s11207-020-01671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01671-7

Keywords

Navigation