Skip to main content
Log in

The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

This article completes and extends a recent study of the Grad–Shafranov (GS) reconstruction in toroidal geometry, as applied to two and a half dimensional configurations in space plasmas with rotational symmetry. A further application to the benchmark study of an analytic solution to the toroidal GS equation with added noise shows deviations in the reconstructed geometry of the flux rope configuration, characterized by the orientation of the rotation axis, the major radius, and the impact parameter. On the other hand, the physical properties of the flux rope, including the axial field strength, and the toroidal and poloidal magnetic flux, agree between the numerical and exact GS solutions. We also present a real-event study of a magnetic cloud flux rope from in situ spacecraft measurements. The devised procedures for toroidal GS reconstruction are successfully executed. Various geometrical and physical parameters are obtained with associated uncertainty estimates. The overall configuration of the flux rope from the GS reconstruction is compared with the corresponding morphological reconstruction based on white-light images. The results show overall consistency, but also discrepancy in that the inclination angle of the flux rope central axis with respect to the ecliptic plane differs by about 20 – 30 degrees in the plane of the sky. The results, in terms of the magnetic flux content, are also consistent with the original straight-cylinder GS reconstruction when using exactly the same reconstruction interval in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Cerfon, A.J., Freidberg, J.P.: 2010, “One size fits all” analytic solutions to the Grad–Shafranov equation. Phys. Plasmas 17(3), 032502. DOI . ADS .

    Article  ADS  Google Scholar 

  • Freidberg, J.P.: 2014, Ideal Magnetohydrodynamics, Plenum, New York, 176.

    Google Scholar 

  • Hara, T., Seki, K., Hasegawa, H., Brain, D.A., Matsunaga, K., Saito, M.H.: 2014, The spatial structure of Martian magnetic flux ropes recovered by the Grad–Shafranov reconstruction technique. J. Geophys. Res., Space Phys. 119, 1262. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hara, T., Luhmann, J.G., Halekas, J.S., Espley, J.R., Seki, K., Brain, D.A., Hasegawa, H., McFadden, J.P., Mitchell, D.L., Mazelle, C., Harada, Y., Livi, R., DiBraccio, G.A., Connerney, J.E.P., Andersson, L., Jakosky, B.M.: 2016, MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophys. Res. Lett. 43, 4816. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hau, L.-N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data. J. Geophys. Res., Space Phys. 104, 6899. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A.: 2016, A global magnetic topology model for magnetic clouds. IV Astrophys. J. 823, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q.: 2017a, The Grad–Shafranov reconstruction in twenty years: 1996 – 2016. Sci. China Earth Sci. 60, 1466. DOI . http://219.238.6.215/publisher/scp/journal/SCES/doi/10.1007/s11430-017-9067-2?slug=full text .

    Article  Google Scholar 

  • Hu, Q.: 2017b, The Grad–Shafranov reconstruction of toroidal magnetic flux ropes: method development and benchmark studies. Solar Phys. 292, 116. DOI .

    Article  ADS  Google Scholar 

  • Hu, Q., Qiu, J., Krucker, S.: 2015, Magnetic field-line lengths inside interplanetary magnetic flux ropes. J. Geophys. Res., Space Phys. 120, 1. DOI . ADS .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2001, Reconstruction of magnetic flux ropes in the solar wind. Geophys. Res. Lett. 28, 467. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res., Space Phys. 107, 1142. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2004, Multiple flux rope magnetic ejecta in the solar wind. J. Geophys. Res., Space Phys. 109, 3102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J. 793, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J.: 2012, Predictions of energy and helicity in four major eruptive solar flares. Solar Phys. 277, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filaments. In: Coronal Mass Ejections, Geophysical Monograph Series 99, American Geophysical Union, Washington, 147. DOI . ADS .

    Google Scholar 

  • Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys. 290, 1371. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2012, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823, 27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2007, Numerical Recipes in C++ : The Art of Scientific Computing, vol. 778. Cambridge Univ. Press, New York. http://numerical.recipes/ . ADS .

    MATH  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: a comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI . ADS .

    Article  ADS  Google Scholar 

  • Romashets, E.P., Vandas, M.: 2003, Force-free field inside a toroidal magnetic cloud. Geophys. Res. Lett. 30, 2065. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Guo, M.: 1996, Magnetopause transects. Geophys. Res. Lett. 23, 3679. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wood, B.E., Rouillard, A.P., Möstl, C., Battams, K., Savani, N.P., Marubashi, K., Howard, R.A., Socker, D.G.: 2012, Connecting coronal mass ejections and magnetic clouds: a case study using an event from 22 June 2009. Solar Phys. 281, 369. DOI . ADS .

    ADS  Google Scholar 

Download references

Acknowledgements

QH acknowledges partial support from NASA grants NNX14AF41G and NNX12AH50G and NRL contract N00173-14-1-G006. All authors were supported as part of an FST team on flux ropes led by Mark Linton and funded by NASA LWS award NNH14AX61I under ROSES NNH13ZDA001N. We thank the reviewer for knowledgeable comments that helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hu.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Linton, M.G., Wood, B.E. et al. The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications. Sol Phys 292, 171 (2017). https://doi.org/10.1007/s11207-017-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1195-z

Keywords

Navigation