Skip to main content
Log in

Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term “magnetic obstacle” (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions (i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward improving reconstructions with possible applications to space weather studies. In summary, our main results demonstrate that the assumed correlation between expanding structure and asymmetric magnetic field is not always valid. Although 59% of the cases could be described by circular-cylindrical geometry, with or without expansion, the remaining cases show significant in situ signatures of departures from circular-cylindrical geometry. These results will aid in the development of more accurate in situ models to reconcile image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys. 284, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berdichevsky, D.B.: 2013, On fields and mass constraints for the uniform propagation of magnetic-flux ropes undergoing isotropic expansion. Solar Phys. 284, 245. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berdichevsky, D.B., Lepping, R.P., Farrugia, C.J.: 2003, Geometric considerations of the evolution of magnetic flux ropes. Phys. Rev. E 67(3), 036405. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. DOI . ADS .

    Article  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R.P., Larson, D.E.: 1998, A magnetic cloud containing prominence material: January 1997. J. Geophys. Res. 103(A1), 277. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1997, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102(A4), 7075. DOI .

    Article  ADS  Google Scholar 

  • Dasso, S., Démoulin, P., Gulisano, A.M.: 2012, Magnetic clouds along the solar cycle: Expansion and magnetic helicity. In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, IAU Symp. 286, 139. DOI . ADS .

    Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455, 349. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys. 244, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A.N., Rodriguez, L., Aran, A., Menvielle, M., Poedts, S.: 2009, Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. 114, A02109. DOI . ADS .

    Article  ADS  Google Scholar 

  • DeForest, C.E., Howard, T.A., McComas, D.J.: 2013, Tracking coronal features from the low corona to Earth: A quantitative analysis of the 2008 December 12 coronal mass ejection. Astrophys. J. 769, 43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys. 498, 551. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys. 250, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Interplanetary origins of moderate (\(-100~\mbox{nT} < \mbox{Dst} \le -50~\mbox{nT}\)) geomagnetic storms during Solar Cycle 23 (1996 – 2008). J. Geophys. Res. 118, 385. DOI . ADS .

    Article  Google Scholar 

  • Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Richardson, I.G., Freeman, M.P., Lepping, R.P., Lazarus, A.J.: 1993, A study of an expanding interplanatary magnetic cloud and its interaction with the Earth’s magnetosphere – The interplanetary aspect. J. Geophys. Res. 98, 7621. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Lepping, R.P., Howard, R.A.: 2005, Solar source of the largest geomagnetic storm of cycle 23. Geophys. Res. Lett. 32, 12. DOI . ADS .

    Article  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G.: 2014, Anomalous expansion of coronal mass ejections during Solar Cycle 24 and its space weather implications. Geophys. Res. Lett. 41, 2673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015, Properties and geoeffectiveness of magnetic clouds during Solar Cycles 23 and 24. J. Geophys. Res. 120, 9221. DOI . ADS .

    Article  Google Scholar 

  • Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E.: 2010, Global and local expansion of magnetic clouds in the inner heliosphere. Astron. Astrophys. 509, A39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L.: 2012, Expansion of magnetic clouds in the outer heliosphere. Astron. Astrophys. 543, A107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A.: 2003, A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium. J. Geophys. Res. 108, 1320. DOI . ADS .

    Article  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T.: 2012, A global magnetic topology model for magnetic clouds. I. Astrophys. J. 748, 109. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29(13), 130000. DOI . ADS .

    Article  Google Scholar 

  • Hidalgo, M.A., Cid, C., Medina, J., Viñas, A.F.: 2000, A new model for the topology of magnetic clouds in the solar wind. Solar Phys. 194, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Sawyer, C.B., House, L., Illing, R.M.E., Wagner, W.J.: 1984, Coronal mass ejections observed during the solar maximum mission – Latitude distribution and rate of occurrence. J. Geophys. Res. 89, 2639. DOI . ADS .

    Article  ADS  Google Scholar 

  • Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of Solar Cycle 23. Ann. Geophys. 23, 625. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N.: 2015, Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res. 120, 3328. DOI . ADS .

    Article  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Lee, C.O., Luhmann, J.G., Li, Y.: 2011, Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23. Ann. Geophys. 29, 1455. DOI . ADS .

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C.: 2007, On the variation of interplanetary magnetic cloud type through Solar Cycle 23: Wind events. J. Geophys. Res. 112, A10103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2005, Automatic identification of magnetic clouds and cloud-like regions at 1 AU: Occurrence rate and other properties. Ann. Geophys. 23, 2687. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Szabo, A., Ogilvie, K.W., Mish, W.H., Vassiliadis, D., Lazarus, A.J., Steinberg, J.T., Farrugia, C.J., Janoo, L., Mariani, F.: 1997, The wind magnetic cloud and events of October 18 – 20, 1995: Interplanetary properties and as triggers for geomagnetic activity. J. Geophys. Res. 102, 14049. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2011, Magnetic clouds at/near the 2007 – 2009 solar minimum: Frequency of occurrence and some unusual properties. Solar Phys. 274, 345. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2015, Wind magnetic clouds for 2010 – 2012: Model parameter fittings, associated shock waves, and comparisons to earlier periods. Solar Phys. 290, 2265. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Smith, C.W., Paulson, K.: 2015, Shocks inside CMEs: A survey of properties from 1997 to 2006. J. Geophys. Res. 120, 2409. DOI . ADS .

    Article  Google Scholar 

  • Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: A review. Solar Phys. 292, 64. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys. 2, 361.

    MathSciNet  MATH  Google Scholar 

  • Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K.: 2003, Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res. 108, 1239. DOI . ADS .

    Article  Google Scholar 

  • Lynnyk, A., Vandas, M.: 2009, Fitting of expanding magnetic clouds: A statistical study. Planet. Space Sci. 57(12), 1375. DOI .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1997, Interplanetary Magnetic Flux Ropes and Solar Filaments, Geophys. Monograph Ser. 99, Am. Geophys. Union, Washington, 147. DOI . ADS .

    Google Scholar 

  • Mohamed, A.A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23. J. Geophys. Res. 117, 1103. DOI . ADS .

    Article  Google Scholar 

  • Nieves-Chinchilla, T., Hidalgo, M.A., Sequeiros, J.: 2005, Magnetic clouds observed at 1 AU during the period 2000 – 2003. Solar Phys. 232, 105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Colaninno, R., Vourlidas, A., Szabo, A., Lepping, R.P., Boardsen, S.A., Anderson, B.J., Korth, H.: 2012, Remote and in situ observations of an unusual Earth-directed coronal mass ejection from multiple viewpoints. J. Geophys. Res. 117, A06106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823(1), 27. DOI .

    Article  ADS  Google Scholar 

  • Odstrcil, D., Pizzo, V.J.: 1999, Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J. Geophys. Res. 104, 28225. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osherovich, V., Fainberg, J., Webb, A.: 2013, Observational evidence for a double-helix structure in CMEs and magnetic clouds. Solar Phys. 284, 261. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1993, Dynamics of aging magnetic clouds. Adv. Space Res. 13, 57. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rodriguez, L., Masías-Meza, J.J., Dasso, S., Démoulin, P., Zhukov, A.N., Gulisano, A.M., Mierla, M., Kilpua, E., West, M., Lacatus, D., Paraschiv, A., Janvier, M.: 2016, Typical profiles and distributions of plasma and magnetic field parameters in magnetic clouds at 1 AU. Solar Phys. 291, 2145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J. Geophys. Res. 117, A09101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Fischer, S., Pelant, P., Dryer, M., Smith, Z., Detman, T.: 1997, Propagation of a spheromak 1. Some comparisons of cylindrical and spherical magnetic clouds. J. Geophys. Res. 102, 24183. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res. 120, 1543. DOI . ADS .

    Article  Google Scholar 

  • Wood, B.E., Wu, C.-C., Lepping, R.P., Nieves-Chinchilla, T., Howard, R.A., Linton, M.G., Socker, D.G.: 2017, A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008 – 2012. Astrophys. J. Suppl. 229, 29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2011, Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for Solar Cycle 23. Solar Phys. 269, 141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2015, Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995 – 2012. Solar Phys. 290, 1243. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123(1), 31. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of the Wind plasma and magnetic field data throughout. We thank to the Wind team and the NASA’s Space Physics Data Facility (SPDF) to make the data available. The work of N. Al-haddad and T. Nieves-Chinchilla is supported by the National Science Foundation under AGS-1433086 grant. The work of T. Nieves-Chinchilla, A. Vourlidas, M.G. Linton, and J.C. Raymond is supported by the NASA LWS program through ROSES NNH13ZDA001N. T. Nieves-Chinchilla thanks to Leila Markus, Anna Chulaki, Lynn Wilson III, and Charlie Farrugia the discussions and comments to the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nieves-Chinchilla.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C. et al. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. Sol Phys 293, 25 (2018). https://doi.org/10.1007/s11207-018-1247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1247-z

Keywords

Navigation