Skip to main content
Log in

Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model

  • OBSERVATIONS AND MODELLING OF THE INNER HELIOSPHERE
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the “Drag-Based Model” (DBM) of heliospheric propagation of interplanetary coronal mass ejections (ICMEs). The DBM is based on the hypothesis that the driving Lorentz force, which launches a CME, ceases in the upper corona and that beyond a certain distance the dynamics becomes governed solely by the interaction of the ICME and the ambient solar wind. In particular, we consider the option where the drag acceleration has a quadratic dependence on the ICME relative speed, which is expected in a collisionless environment, where the drag is caused primarily by emission of magnetohydrodynamic (MHD) waves. In this paper we present the simplest version of DBM, where the equation of motion can be solved analytically, providing explicit solutions for the Sun–Earth ICME transit time and impact speed. This offers easy handling and straightforward application to real-time space-weather forecasting. Beside presenting the model itself, we perform an analysis of DBM performances, applying a statistical and case-study approach, which provides insight into the advantages and drawbacks of DBM. Finally, we present a public, DBM-based, online forecast tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Borgazzi, A., Lara, A., Echer, E., Alves, M.V.: 2009, Dynamics of coronal mass ejections in the interplanetary medium. Astron. Astrophys. 498, 885 – 889. doi: 10.1051/0004-6361/200811171 .

    Article  ADS  MATH  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi: 10.1007/BF00733434 .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Delaboudiniere, J.-P., Howard, R.A., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G.M., Thompson, B., Wang, D.: 1998, Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys. Res. Lett. 25, 3019 – 3022. doi: 10.1029/98GL00704 .

    Article  ADS  Google Scholar 

  • Burkepile, J.T., Hundhausen, A.J., Stanger, A.L., St. Cyr, O.C., Seiden, J.A.: 2004, Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J. Geophys. Res. 109, A03103. doi: 10.1029/2003JA010149 .

    Article  ADS  Google Scholar 

  • Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an Earth-directed coronal mass ejection in three dimensions. Nature Comm. 1, 74. doi: 10.1038/ncomms1077 .

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135 – 149. doi: 10.1023/B:SOLA.0000033366.10725.a2 .

    Article  ADS  Google Scholar 

  • Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1996, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res. 101, 4855 – 4870. doi: 10.1029/95JA03769 .

    Article  ADS  Google Scholar 

  • Chen, J., Kunkel, V.: 2010, Temporal and physical connection between coronal mass ejections and flares. Astrophys. J. 717, 1105 – 1122. doi: 10.1088/0004-637X/717/2/1105 .

    Article  ADS  Google Scholar 

  • Cho, K.-S., Moon, Y.-J., Dryer, M., Fry, C.D., Park, Y.-D., Kim, K.-S.: 2003, A statistical comparison of interplanetary shock and CME propagation models. J. Geophys. Res. 108, SSH8. doi: 10.1029/2003JA010029 .

    Google Scholar 

  • Davies, J.A., Harrison, R.A., Perry, C.H., Möstl, C., Lugaz, N., Rollett, T., Davis, C.J., Crothers, S.R., Temmer, M., Eyles, C.J., Savani, N.P.: 2012, A self-similar expansion model for use in solar wind transient propagation studies. Astrophys. J. 750, 23. doi: 10.1088/0004-637X/750/1/23 .

    Article  ADS  Google Scholar 

  • Davis, C.J., Davies, J.A., Lockwood, M., Rouillard, A.P., Eyles, C.J., Harrison, R.A.: 2009, Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett. 36, L08102. doi: 10.1029/2009GL038021 .

    Article  ADS  Google Scholar 

  • Dryer, M., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S., Akasofu, S.-I.: 2004, Real-time shock arrival predictions during the “Halloween 2003 epoch”. Space Weather 2, S09001. doi: 10.1029/2004SW000087 .

    Article  ADS  Google Scholar 

  • Falkenberg, T.V., Vršnak, B., Taktakishvili, A., Odstrcil, D., MacNeice, P., Hesse, M.: 2010, Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters. Space Weather 8, S06004. doi: 10.1029/2009SW000555 .

    Article  ADS  Google Scholar 

  • Falkenberg, T.V., Vennerstrom, S., Brain, D.A., Delory, G., Taktakishvili, A.: 2011, Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001. J. Geophys. Res. 116, A06104. doi: 10.1029/2010JA016279 .

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Berdichevsky, D.B., Möstl, C., Galvin, A.B., Leitner, M., Popecki, M.A., Simunac, K.D.C., Opitz, A., Lavraud, B., Ogilvie, K.W., Veronig, A.M., Temmer, M., Luhmann, J.G., Sauvaud, J.A.: 2011, Multiple, distant (40 deg) in situ observations of a magnetic cloud and a corotating interaction region complex. J. Atmos. Solar-Terr. Phys. 73, 1254 – 1269. doi: 10.1016/j.jastp.2010.09.011 .

    Article  ADS  Google Scholar 

  • Feng, X.S., Zhang, Y., Sun, W., Dryer, M., Fry, C.D., Deehr, C.S.: 2009, A practical database method for predicting arrivals of “average” interplanetary shocks at Earth. J. Geophys. Res. 114, A01101. doi: 10.1029/2008JA013499 .

    Article  ADS  Google Scholar 

  • Fry, C.D., Dryer, M., Smith, Z., Sun, W., Deehr, C.S., Akasofu, S.-I.: 2003, Forecasting solar wind structures and shock arrival times using an ensemble of models. J. Geophys. Res. 108, SSH5. doi: 10.1029/2002JA009474 .

    Article  Google Scholar 

  • González-Esparza, J.A., Lara, A., Pérez-Tijerina, E., Santillán, A., Gopalswamy, N.: 2003, A numerical study on the acceleration and transit time of coronal mass ejections in the interplanetary medium. J. Geophys. Res. 108, SSH9. doi: 10.1029/2001JA009186 .

    Article  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145 – 148.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207 – 29218. doi: 10.1029/2001JA000177 .

    Article  ADS  Google Scholar 

  • Howard, T.A., Tappin, S.J.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 3. Physical implications. Space Sci. Rev. 147, 89 – 110. doi: 10.1007/s11214-009-9577-7 .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4 .

    Article  ADS  Google Scholar 

  • Jackson, B.V., Buffington, A., Hick, P.P., Altrock, R.C., Figueroa, S., Holladay, P.E., Johnston, J.C., Kahler, S.W., Mozer, J.B., Price, S., Radick, R.R., Sagalyn, R., Sinclair, D., Simnett, G.M., Eyles, C.J., Cooke, M.P., Tappin, S.J., Kuchar, T., Mizuno, D., Webb, D.F., Anderson, P.A., Keil, S.L., Gold, R.E., Waltham, N.R.: 2004, The solar mass-ejection imager (SMEI) mission. Solar Phys. 225, 177 – 207. doi: 10.1007/s11207-004-2766-3 .

    Article  ADS  Google Scholar 

  • Koskinen, H.E.J., Huttunen, K.E.J.: 2006, Geoeffectivity of coronal mass ejections. Space Sci. Rev. 124, 169 – 181. doi: 10.1007/s11214-006-9103-0 .

    Article  ADS  Google Scholar 

  • Lara, A., Borgazzi, A.I.: 2009, Dynamics of interplanetary CMEs and associated type II bursts. In: Gopalswamy, N., Webb, D.F. (eds.) Proc. IAU Symp. 257, 287 – 290. doi: 10.1017/S1743921309029421 .

    Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165 – 180.

    Article  ADS  Google Scholar 

  • Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762 – 1777. doi: 10.1088/0004-637X/722/2/1762 .

    Article  ADS  Google Scholar 

  • Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME–CME interaction. Ann. Geophys. 27, 3479 – 3488. doi: 10.5194/angeo-27-3479-2009 .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Li, Y., Thernisien, A.F.R., Robbrecht, E., Fisher, G.H., Luhmann, J.G., Vourlidas, A.: 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection. J. Geophys. Res. 115, A07106. doi: 10.1029/2009JA015099 .

    Article  ADS  Google Scholar 

  • Maloney, S.A., Gallagher, P.T.: 2010, Solar wind drag and the kinematics of interplanetary coronal mass ejections. Astrophys. J. Lett. 724, L127 – L132. doi: 10.1088/2041-8205/724/2/L127 .

    Article  ADS  Google Scholar 

  • Manchester, W.B., Gombosi, T.I., Roussev, I., Ridley, A., De Zeeuw, D.L., Sokolov, I.V., Powell, K.G., Tóth, G.: 2004, Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. J. Geophys. Res. 109, A02107. doi: 10.1029/2003JA010150 .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys. 235, 345 – 368. doi: 10.1007/s11207-006-0100-y .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2010, Ooty interplanetary scintillation – remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137 – 157. doi: 10.1007/s11207-010-9593-5 .

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Mujiber Rahman, A.: 2011, Coronal mass ejections: propagation time and associated internal energy. J. Atmos. Solar-Terr. Phys. 73, 671 – 677. doi: 10.1016/j.jastp.2011.01.017 .

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Gopalswamy, N., Yashiro, S., Lara, A., Michalek, G., Howard, R.A.: 2004, Influence of coronal mass ejection interaction on propagation of interplanetary shocks. J. Geophys. Res. 109, A06109. doi: 10.1029/2003JA010300 .

    Article  ADS  Google Scholar 

  • McKenna-Lawlor, S.M.P., Dryer, M., Smith, Z., Kecskemety, K., Fry, C.D., Sun, W., Deehr, C.S., Berdichevsky, D., Kudela, K., Zastenker, G.: 2002, Arrival times of flare/halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations. Ann. Geophys. 20, 917 – 935. doi: 10.5194/angeo-20-917-2002 .

    Article  ADS  Google Scholar 

  • McKenna-Lawlor, S.M.P., Dryer, M., Kartalev, M.D., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S., Kecskemety, K., Kudela, K.: 2006, Near real-time predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23. J. Geophys. Res. 111, A11103. doi: 10.1029/2005JA011162 .

    Article  ADS  Google Scholar 

  • McKenna-Lawlor, S.M.P., Dryer, M., Fry, C.D., Smith, Z.K., Intriligator, D.S., Courtney, W.R., Deehr, C.S., Sun, W., Kecskemety, K., Kudela, K., Balaz, J., Barabash, S., Futaana, Y., Yamauchi, M., Lundin, R.: 2008, Predicting interplanetary shock arrivals at Earth, Mars, and Venus: a real-time modeling experiment following the solar flares of 5 – 14 December 2006. J. Geophys. Res. 113, A06101. doi: 10.1029/2007JA012577 .

    Article  ADS  Google Scholar 

  • Michalek, G., Gopalswamy, N., Yashiro, S.: 2009, Expansion speed of coronal mass ejections. Solar Phys. 260, 401 – 406. doi: 10.1007/s11207-009-9464-0 .

    Article  ADS  Google Scholar 

  • Michałek, G., Gopalswamy, N., Lara, A., Manoharan, P.K.: 2004, Arrival time of halo coronal mass ejections in the vicinity of the Earth. Astron. Astrophys. 423, 729 – 736. doi: 10.1051/0004-6361:20047184 .

    Article  ADS  Google Scholar 

  • Morrill, J.S., Howard, R.A., Vourlidas, A., Webb, D.F., Kunkel, V.: 2009, The impact of geometry on observations of CME brightness and propagation. Solar Phys. 259, 179 – 197. doi: 10.1007/s11207-009-9403-0 .

    Article  ADS  Google Scholar 

  • Möstl, C., Davies, J.A.: 2012, Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Solar Phys., in press. doi: 10.1007/s11207-012-9978-8 .

  • Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180 – L185. doi: 10.1088/0004-637X/705/2/L180 .

    Article  ADS  Google Scholar 

  • Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 372, L24103. doi: 10.1029/2010GL045175 .

    Google Scholar 

  • Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J. Geophys. Res. 110, A02106. doi: 10.1029/2004JA010745 .

    Article  ADS  Google Scholar 

  • Odstrcil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. 109, A02116. doi: 10.1029/2003JA010135 .

    Article  ADS  Google Scholar 

  • Oler, C.: 2004, Prediction performance of space weather forecast centers following the extreme events of October and November 2003. Space Weather 2, S08001. doi: 10.1029/2004SW000076 .

    Article  ADS  Google Scholar 

  • Owens, M., Cargill, P.: 2004, Predictions of the arrival time of coronal mass ejections at 1 AU: an analysis of the causes of errors. Ann. Geophys. 22, 661 – 671. doi: 10.5194/angeo-22-661-2004 .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369 – 1385. doi: 10.1086/518683 .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283 – 291. doi: 10.1088/0004-637X/701/1/283 .

    Article  ADS  Google Scholar 

  • Rollett, T., Möstl, C., Temmer, M., Veronig, A.M., Farrugia, C.J., Biernat, H.K.: 2012, Constraining the kinematics of coronal mass ejections in the inner heliosphere with in-situ signatures. Solar Phys. 276, 293 – 314. doi: 10.1007/s11207-011-9897-0 .

    Article  ADS  Google Scholar 

  • Rouillard, A.P.: 2011, Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Solar-Terr. Phys. 73, 1201 – 1213. doi: 10.1016/j.jastp.2010.08.015 .

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Lavraud, B., Sheeley, N.R., Davies, J.A., Burlaga, L.F., Savani, N.P., Jacquey, C., Forsyth, R.J.: 2010, White light and in situ comparison of a forming merged interaction region. Astrophys. J. 719, 1385 – 1392. doi: 10.1088/0004-637X/719/2/1385 .

    Article  ADS  Google Scholar 

  • Russell, C.T., Mulligan, T.: 2002, On the magnetosheath thicknesses of interplanetary coronal mass ejections. Planet. Space Sci. 50, 527 – 534. doi: 10.1016/S0032-0633(02)00031-4 .

    Article  ADS  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033 – 1059.

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S., Biesecker, D.A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R Sun. Astrophys. J. 484, 472 – 478. doi: 10.1086/304338 .

    Article  ADS  Google Scholar 

  • Smith, Z.K., Dryer, M., McKenna-Lawlor, S.M.P., Fry, C.D., Deehr, C.S., Sun, W.: 2009, Operational validation of HAFv2’s predictions of interplanetary shock arrivals at Earth: declining phase of Solar Cycle 23. J. Geophys. Res. 114, A05106. doi: 10.1029/2008JA013836 .

    Article  ADS  Google Scholar 

  • Taktakishvili, A., Kuznetsova, M., MacNeice, P., Hesse, M., Rastätter, L., Pulkkinen, A., Chulaki, A., Odstrcil, D.: 2009, Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7, S03004. doi: 10.1029/2008SW000448 .

    Article  ADS  Google Scholar 

  • Tappin, S.J.: 2006, The deceleration of an interplanetary transient from the Sun to 5 AU. Solar Phys. 233, 233 – 248. doi: 10.1007/s11207-006-2065-2 .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Veronig, A.M.: 2007, Periodic appearance of coronal holes and the related variation of solar wind parameters. Solar Phys. 241, 371 – 383. doi: 10.1007/s11207-007-0336-1 .

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101 – 112. doi: 10.1088/0004-637X/743/2/101 .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME–CME interaction event. Astrophys. J. 749, 57. doi: 10.1088/0004-637X/749/1/57 .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2001a, Deceleration of coronal mass ejections. Solar Phys. 202, 173 – 189.

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2001b, Dynamics of solar coronal eruptions. J. Geophys. Res. 106, 25249 – 25260. doi: 10.1029/2000JA004007 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. 107, SSH2. doi: 10.1029/2001JA000120 .

    Google Scholar 

  • Vršnak, B., Žic, T.: 2007, Transit times of interplanetary coronal mass ejections and the solar wind speed. Astron. Astrophys. 472, 937 – 943. doi: 10.1051/0004-6361:20077499 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315 – 330. doi: 10.1007/s11207-007-0285-8 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Vrbanec, D., Čalogović, J.: 2008, Dynamics of coronal mass ejections. The mass-scaling of the aerodynamic drag. Astron. Astrophys. 490, 811 – 815. doi: 10.1051/0004-6361:200810215 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Ruždjak, D., Sudar, D., Gopalswamy, N.: 2004, Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? Astron. Astrophys. 423, 717 – 728. doi: 10.1051/0004-6361:20047169 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Sudar, D., Ruždjak, D., Žic, T.: 2007, Projection effects in coronal mass ejections. Astron. Astrophys. 469, 339 – 346. doi: 10.1051/0004-6361:20077175 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. doi: 10.1051/0004-6361/200913482 .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A., Fry, C.D., Kuchar, T.A., Odstrcil, D., Jackson, B.V., Bisi, M.M., Harrison, R.A., Morrill, J.S., Howard, R.A., Johnston, J.C.: 2009, Study of CME propagation in the inner heliosphere: SOHO LASCO, SMEI and STEREO HI observations of the January 2007 events. Solar Phys. 256, 239 – 267. doi: 10.1007/s11207-009-9351-8 .

    Article  ADS  Google Scholar 

  • Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524 – 1532. doi: 10.1088/0004-637X/715/2/1524 .

    Article  ADS  Google Scholar 

  • Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res. 109, A03109. doi: 10.1029/2003JA010226 .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi: 10.1029/2003JA010282 .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V.: 2003, Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J. 582, 520 – 533. doi: 10.1086/344611 .

    Article  ADS  Google Scholar 

  • Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. 107, SSH13. doi: 10.1029/2001JA009143 .

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for constructive comments and suggestions, which improved the manuscript considerably. The presented work has received funding from the European Commission’s Seventh Framework Programs (FP7/2007-2013) under the grant agreements No. 218816 (SOTERIA project, www.soteria-space.eu ) and No. 263252 (COMESEP project, www.comesep.eu ). M.T. acknowledges the Austrian Science Fund (FWF): FWF V195-N16. C.M. acknowledges the support by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. Y.-J.M. has been supported by the WCU Program (No. R31-10016) and research grants (KRF-2008-314-C00158, 20090071744 and 20100014501) though the National Research Foundation of the Republic of Korea funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vršnak.

Additional information

Observations and Modelling of the Inner Heliosphere

Guest Editors: Mario M. Bisi, Richard A. Harrison, and Noé Lugaz

Appendix

Appendix

Hereinafter, we present an open-access online forecast tool for predicting the ICME arrival at 1 AU, which is based on the previously described formulation of the DBM. This forecast tool was developed in the frame of the European Commission FP7 Project SOTERIA (SOlar-TERrestrial Investigations and Archives; www.soteria-space.eu ) and advanced within FP7 Project COMESEP (COronal Mass Ejections and Solar Energetic Particles; www.comesep.eu ). The tool is available at http://oh.geof.unizg.hr/CADBM/cadbm.php .

The input page of the DBM forecast web-site is presented in Figure 6. In the first two input boxes the user has to specify the date and time (UT) when the CME was located at a given distance R 0 (third input box). Preferably, R 0 should be around, or beyond, the radial distance of R∼20. Finally, the CME speed at R 0, v 0v(R 0), is required (fourth input box). The default values are set to R=20 and v 0=1000 km s−1.

Figure 6
figure 6

Input page of the Drag-Based Model forecast web-site, available at: http://oh.geof.unizg.hr/CADBM/cadbm.php .

To complete the set of input parameters, the drag parameter γ (expressed in 10−7 km−1) and the solar-wind speed w (expressed in km s−1) have to be specified, too. In Sections 2 and 3 it was shown that γ and w most often attain values in the range 2×10−8−2×10−7 km−1 and 300 – 600 km s−1, respectively. In the case of massive ICMEs (generally meaning bright CMEs in the coronagraphic images) γ should have a small value, whereas in the case of low-density ICME (dim in coronagraphic images) it should be closer to the upper limit. In the slow-wind environment, w should be chosen between 300 and 400 km s−1. If there is an equatorial coronal hole in the vicinity of the ICME source region, one should apply a higher value, say, 500 – 600 km s−1. In such a case, a high value of solar-wind speed should be combined with a low value of γ, since the fast solar wind is characterized by a low density. Following the results presented in Section 3, the default values are set to γ=1×10−7 km−1 and w=500 km s−1. For inexperienced users we would recommend that beside the default values of w and γ to use also the mentioned limiting combinations to estimate a time-window within which the ICME arrival is expected.

After clicking the “Calculate” button, the output page appears (Figure 7). The model output provides an estimate of the arrival date and time of the ICME at 1 AU, as well as the travel time from R=R 0 to R=214 (=1 AU) and the impact speed v 1 at 1 AU. Beside the outcome of the calculation, the output page summarizes the input parameters used, as well as the a new input set, to provide a new calculation (see bottom part of Figure 7).

Figure 7
figure 7

Output page of the DBM forecast web-site.

Again, we emphasize that the output values correspond to the front boundary of the ejecta, i.e., the ICME-associated shock should arrive several hours earlier. Furthermore, the present form of DBM does not take into account the direction of the ICME motion, i.e., in the case of flank-encounter the arrival time at the Earth might be delayed by several hours, in extreme cases up to one day. It is foreseen that in future a more advanced form of DBM will be developed, which will take these two effects into account.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vršnak, B., Žic, T., Vrbanec, D. et al. Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model. Sol Phys 285, 295–315 (2013). https://doi.org/10.1007/s11207-012-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0035-4

Keywords

Navigation