Skip to main content

Advertisement

Log in

Improved group decision-making evaluation method of offshore pipeline routing optimisation in submarine landslide-prone area

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Submarine landslides are a great hazard to offshore pipelines. The comparison and optimisation of pipeline routing schemes to reduce the potential submarine landslide risk is a key issue in offshore oil and gas development engineering. This paper presents an improved group decision-making evaluation method for offshore pipeline routing optimisation in areas prone to submarine landslides. An information integrity variable is proposed to adjust the relative weight of each factor considering the incompleteness of the engineering geological survey information and data. The credibility level of each expert involved in the evaluation, which is calculated based on the similarity and difference of the experts’ judgment matrices, is introduced to correct the information integrity variable, relative weights, and memberships. The group decision-making for offshore pipeline routing selection is then obtained based on the principle of the majority rule. Finally, a case of pipeline routing optimisation in the submarine canyon area of the Baiyun depression, northern South China Sea, is assessed by using the proposed method. The result shows that the proposed group decision-making method can enhance the objectivity of the assessment for the offshore pipeline routing optimisation under a subjective environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

We declared that materials described in the manuscript include all relevant raw data. Reuse permission of Fig. 12 has been granted from the copyright owner(s) for both the print and online format. The improved group decision-making data (not including background data) will be freely available to any scientist wishing to use them for non-commercial purposes.

Fig.12
figure 12

Expert credit degree based on information integrity vector

References

  • Alfurhood B, Silaghi M (2018) A survey of group decision making methods and evaluation techniques, Proceedings of the Thirty-First International Florida Artificial Intelligence Research Society Conference (FLAIRS-31) Published by the AAAI Press, pp. 68–171

  • Baranov BV, Prokudin VG, Jin YK, Dozorova KA, Rukavishnikova DD (2018) Submarine landslides on the western slope of the Kuril basin Sea of Okhotsk. Oceanology 58(3):425–434

    Article  Google Scholar 

  • Basak I, Saaty T (1993) Group decision making using the analytic hierarchy process. Math Comput Model 17(4–5):101–109. https://doi.org/10.1016/0895-7177(93)90179-3

    Article  Google Scholar 

  • Bradshaw AS, Tappin DR, Rugg D (2010) The kinematics of a debris avalanche on the sumatra margin. In: Mosher DC, Moscardelli L, Shipp RC et al (eds) Submarine mass movements and their consequences. Springer, Berlin, pp 1–8

    Google Scholar 

  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Article  Google Scholar 

  • Bull S, Cartwright J, Huuse M (2009) A review of kinematic indicators from mass-transport complexes using 3D seismic data. Mar Pet Geol 26(7):1132–1151

    Article  Google Scholar 

  • Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Heflidason H, Imbo Y, Laberg JS, Locat J, Long D, Longva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213(1–4):9–72

    Article  Google Scholar 

  • Capuano N, Chiclana F, Fujita H, Herrera-Viedma E, Loia V (2018) Fuzzy group decision making with incomplete information guided by social influence. IEEE Trans Fuzzy Syst 26(3):1704–1718. https://doi.org/10.1109/TFUZZ.2017.2744605

    Article  Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantánamo. Cuba Geomorphol 94(3–4):453–466

    Article  Google Scholar 

  • Chaytor JD, Baldwin WE, Bentley SJ, Damour M, Jones D, Maloney J, Miner MD, Obelcz J, Xu K (2020) Short-and long-term movement of mudflows of the Mississippi River Delta Front and their known and potential impacts on oil and gas infrastructure. Geol soc lond spec publ 500(1):587–604. https://doi.org/10.1144/SP500-2019-183

    Article  Google Scholar 

  • Chen JR, Yang MZ (1996) Research on the potential factors for geologic hazards in the South China Sea. J Eng Geol 4(3):34–39 (in Chinese)

    Google Scholar 

  • Coppo NP, Pierre-André Schnegg Falco P, Costa R (2009) A deep scar in the flank of tenerife (canary islands) geophysical contribution to tsunami hazard assessment. Earth Planet Sci Lett 282(1–4):65–68. https://doi.org/10.1016/j.epsl.2009.03.017

    Article  Google Scholar 

  • De Blasio FV, Elverhoi A, Issler D et al (2005) On the dynamics of subaqueous clay rich gravity mass flows- the giant Storegga slide. Nor Mar Pet Geol 22(1):179–186

    Article  Google Scholar 

  • Dong YK, Wang D, Randolph MF (2017) Runout of submarine landslide simulated with material point method. J Hydrodyn 29(3):438–444. https://doi.org/10.1016/S1001-6058(16)60754-0

    Article  Google Scholar 

  • Feng WK, Shi YH, Chen LH (1994) Research for seafloor landslide stability on the outer continental shelf and the upper continental slope in the northern South China Sea. Mar geol Quat geol 14(2):81–94 ((in Chinese))

    Google Scholar 

  • Gauer P, Kvalstad TJ, Forsberg CF et al (2005) The last phase of the Storegga Slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology. Mar Pet Geol 2:171–178

    Article  Google Scholar 

  • Gauer P, Elverhøi A, Issler D et al (2006) On numerical simulations of subaqueous slides: back-calculations of laboratory experiments. Norw J Geol 86:295–300

    Google Scholar 

  • Gee MJR, Uy HS, Warren J, Morley CK, Lambiase JJ (2007) The Brunei slide:a giant submarine landslide on the north west Borneomargin revealed by 3D seismic data. Mar Geol 246(1):9–23

    Article  Google Scholar 

  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiedeand D, Aryal J (2019) Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens 11(2):196. https://doi.org/10.3390/rs11020196

    Article  Google Scholar 

  • Greene HG, Murai LY, Watts P, Maher NA, Fisher MA, Paull CE et al (2006) Submarine landslides in the santa barbara channel as potential tsunami sources. Nat Hazards Earth Syst Sci 6(1):63–88. https://doi.org/10.5194/nhess-6-63-2006

    Article  Google Scholar 

  • Hampton M, Lee H (1996) Submarine landslides. Rev Geophys 34(1):33–59. https://doi.org/10.1029/95RG03287

    Article  Google Scholar 

  • Hance JJ (2003). Submarine slope stability. Dissertation, The University of Texas

  • Harbitz CB, Parker G, Elverhøi A et al (2003) Hydroplaning of subaqueous debris flows and glide blocks analytical solutions and discussion. J Geophys Res 108:B7

    Google Scholar 

  • He Y, Zhong G, Wang L, Kuang Z (2014) Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, south china sea. Mar Pet Geol 57:546–560

    Article  Google Scholar 

  • Herrera-Viedma E, Alonso S, Chiclana F, Herrera F (2007) A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Trans Fuzzy Syst 15(5):863–877. https://doi.org/10.1109/TFUZZ.2006.889952

    Article  Google Scholar 

  • Hsu SK, Tsai C-H, Ku C-Y et al (2009) Flow of turbidity currents as evidenced by failure of submarine telecommunication cables. In: Chiocci FL, Ridenti D, Casalbore D, Bosman A (eds) Intern Conf on Seafloor Mapping for Geohazard Assessment, Extended Abs. Rendiconti online, Società Geologica Italiana, pp 167–171

    Google Scholar 

  • Hu Y, Randolph MF (1998) A practical numerical approach for large deformation problems in soil. Int J Numer Anal Meth Geomech 22(5):327–350

    Article  Google Scholar 

  • Imran J, Parker G, Locat J et al (2001) 1D numerical model of muddy subaqueous and subaerial debris flows. J Hydraul Eng 127(11):959–968

    Article  Google Scholar 

  • Jiang MJ, Sun C, Rosta GB, Zhang WC (2015) A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach. Eng Geol 190:1–16

    Article  Google Scholar 

  • KoKo C, Flentje P, Chowdhury R (2004) Landslides qualitative hazard and risk assessment method and its reliability. Bull Eng Geol Env 63(2):149–165

    Google Scholar 

  • Korup O, Stolle A (2014) Landslide prediction from machine learning. Geol Today 30(1):26–33

    Article  Google Scholar 

  • Heureux L, Vanneste M, Rise L, Brendryen J, Forsberg CF, Nadim F et al (2013) Stability, mobility and failure mechanism for landslides at the upper continental slope off Vesterålen. Norway Mar Geol 346(192):207

    Google Scholar 

  • Li SJ, Chu FY, Fang YX, Wu ZY, Ni YG (2010) Associated interpretation of sub-bottom and single-channel seismic profiles from slope of Shenhu Area in the northern South China Sea-characteristics of gas hydrate sediment. J Trop Oceanogr 29(4):56–62 ((in Chinese))

    Google Scholar 

  • Li CL, Wu SG, Bao ZhuZY, XX, (2014) The assessment of submarine slope instability in Baiyun Sag using gray clustering method. Nat Hazards 74:1179–1190

    Article  Google Scholar 

  • Li XS, Liu LJ, Li JG, Gao S, Zhou QJ, Su TY (2015) Mass movements in small canyons in the northeast of Baiyun deepwater area, north of the South China Sea. Acta Oceanol Sin 34(8):35–42. https://doi.org/10.1007/s13131-015-0702-z

    Article  Google Scholar 

  • Liu J, Liu LJ, Li P, Gao S, Gao W, Xu YQ (2019) Geotechnical properties and stability of the submarine canyon in the northern South China Sea. Acta Oceanol Sin 38(11):91–98. https://doi.org/10.1007/s13131-019-1501-8

    Article  Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39(1):193–212

    Article  Google Scholar 

  • Maier KL, Brothers DS, Paull CK, Mcgann M, Caress DW, Conrad JE (2017) Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland. Mar Geol 393:47–66

    Article  Google Scholar 

  • Masson DG, Canals M, Alonso B, Urgeles R, Huhnerbach V (1998) The canary debris flow: source area morphology and failure mechanisms. Sedimentology 45:411–432

    Article  Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans r Soc 364:2009–2039

    Article  Google Scholar 

  • McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology US Continental Slope. Mar Geol 169:103

    Article  Google Scholar 

  • Mienert J, Berndt C, Laberg JS, Vorren TO (2002) Submarine landslides on continental margins. In: Wefer G, Billet D, Hebbeln D, Jørgensen BB, Schlu¨ter, M., van Veering, T. (eds) Ocean Margin Systems. Springer Verlag, Heidelberg, pp 179–193

    Chapter  Google Scholar 

  • Mosher DC, Monahan PA, Barrie JV et al (2004) Coastal submarine failures in the Strait of Georgia, British Columbia: Landslides of the 1946- Vancouver Island earthquake. J Coast Res 20:277–291

    Article  Google Scholar 

  • Mosher DC, Moscardelli L, Shipp RC et al (2010) Submarine mass movements and their consequences. In: Mosher DC, Moscardelli L, Shipp RC et al (eds) Submarine mass movements and their consequences. Springer, Berlin, pp 1–8

    Chapter  Google Scholar 

  • Nian YJ, Zhu YS, Chen Q, Hao GJ, Luo JH, Chen DX (2014) The research and cognition of typical submarine landslide characteristics of Liuhua deepwater block. Progress Geophys 29(3):1412–1417. https://doi.org/10.6038/pg20140357.(inChinese)

    Article  Google Scholar 

  • Nian TK, Guo XS, Zheng DF, Xiu ZX, Jiang ZB (2019) Susceptibility assessment of regional submarine landslides triggered by seismic actions. Appl Ocean Res 93:101964

    Article  Google Scholar 

  • Pang X, Chen CM, Peng DJ et al (2007) Sequence stratigraphy of deep-water fan system of pearl River South China Sea. Earth Sci Front 14(1):220–229 ((in Chinese))

    Article  Google Scholar 

  • Pardeshi SD, Autade SE, Pardeshi SS (2013) Landslide hazard assessment: recent trends and techniques. SpringerPlus 2(1):523. https://doi.org/10.1186/2193-1801-2-523

    Article  Google Scholar 

  • Pope EL, Talling PJ, Carter L (2017) Which earthquakes trigger damaging submarine mass movements: Insights from a global record of submarine cable breaks? Mar Geol 384:131–146

    Article  Google Scholar 

  • Posamentier HW, Martinsen OJ, Shipp RC (2011) The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data. Mass-transport deposits in deepwater settings. Tulsa: SEPM. Spec Publ 96:7–38

    Google Scholar 

  • Qigen L, Yanyi L, Lianyou L, Ying W (2017) Earthquake-triggered landslide susceptibility assessment based on support vector machine combined with newmark displacement model. J Geo-Inf Sci 76(19):1–9

    Google Scholar 

  • Qin XZ, Wang XH, Yang DL (2000) Credit degree methods of group decision- making in AHP (II). Syst Eng Theory Pract 11(5):76–80 ((in Chinese))

    Google Scholar 

  • Scarselli N (2020) Submarine landslides-architecture, controlling factors and environments. a summary - ScienceDirect. Regional Geology and Tectonics (Second Edition), 417–439 https://doi.org/10.1016/B978-0-444-64134-2.00015-8

  • Song B, Cheng Y, Yan C, Han Z, Ding J, Li Y, Wei J (2019) Influences of hydrate decomposition on submarine landslide. Landslides 16:2127–2150

    Article  Google Scholar 

  • Sun QL, Alves TM, Lu XY, Chen CX, Xie XN (2018) True volumes of slope failure estimated from a quaternary mass-transport deposit in the northern South China Sea. Geophys Res Lett 45(6):2642–2651. https://doi.org/10.1002/2017GL076484

    Article  Google Scholar 

  • Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The sissano, papua new guinea tsunami of July 1998-offshore evidence on the source. Mar Geol 175:1–23

    Article  Google Scholar 

  • Tappin D R, McNeill L C, Henstock T, et al. (2007) Mass wasting processes- offshore Sumatra. Lykousis V, Sakellariou D, and Locat J, Eds., Submarine mass movements and their consequences: Advances in Natural and Technological Hazards Research Springer, The Netherlands

  • Vanneste M, Sultan N, Garziglia S, Forsberg CF, L’Heureux J (2014) Seafloor instabilities andsediment deformation processes: the need for integrated, multi- disciplinary investigations. Mar Geol 352:183–214. https://doi.org/10.1016/j.margeo.2014.01.005

    Article  Google Scholar 

  • Wang HB, Wu SR, Shi JS, Li B (2013a) Qualitative hazard and risk assessment of landslides: a practical framework for a case study in China. Nat Hazards 69(3):1281–1294

    Article  Google Scholar 

  • Wang D, Randolph MF, White DJ (2013b) A dynamic large deformation finite elementmethod based on mesh regeneration. Comput Geotech 54:192–201

    Article  Google Scholar 

  • Watts AB, Masson DG (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res 100(B12):24487–98

    Article  Google Scholar 

  • Wu NY, Zhang GX, Liang JQ et al (2013) Progress of gas hydrate research in Northern South China Sea. Adv New Renew Energ 1(1):80–94

    Google Scholar 

  • Xiu ZX, Liu LJ, Xie QH, Li XS, Li JG, Hu GH, Yang JH (2015) Runout prediction and dynamic characteristic analysis of a potential submarine landslide in Liwan 3–1 gas field. Acta Oceanol Sin 34(7):116–122. https://doi.org/10.1007/s13131-015-0697-2

    Article  Google Scholar 

  • Yang JH, Wu QY, Zhou Y (2014) Engineering geological zoning and evaluation along the deep water segment of the pipeline route in LW3-1 gasfiled. China Offshore Oil Gas 26(2):82–87 ((in Chinese))

    Google Scholar 

  • Zhang W, Wang D, Randolph MF, Puzrin AM (2015) Catastrophic failure in planar landslides with a fully softened weak zone. Géotechnique 65(9):755–769. https://doi.org/10.1680/geot14.P.218

    Article  Google Scholar 

  • Zhou Q, Li X, Zhou H, Liu L, Ma L (2018) Characteristics and genetic analysis of submarine landslides in the northern slope of the south china sea. Mar Geophys Res 6:1–12

    Google Scholar 

  • Zhu MZ, Graham S, Pang X, McHargue T (2010) Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Mar Pet Geol 27(1):307–319

    Article  Google Scholar 

Download references

Funding

The work presented here was financially supported by the Power China Huadong Engineering Corporation Limited “201” project (KY2018-ZD-01), the National Natural Science Foundation of China [41606084; 41876066], the Shandong Provincial Natural Science Foundation, China (ZR2017QD004), the National Key Research and Development Project (2017YFC0307305) and the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), SKLGP2019K023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Shan.

Ethics declarations

Conflicts of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, Z., Xu, Q., Shan, Z. et al. Improved group decision-making evaluation method of offshore pipeline routing optimisation in submarine landslide-prone area. Nat Hazards 108, 2225–2248 (2021). https://doi.org/10.1007/s11069-021-04777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04777-8

Keywords

Navigation