Skip to main content
Log in

Multi-scenario Group Decision-Making Based on TOPSIS for Deep Hole Drill Parameter Optimization

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The group decision-making based on Technique for Order Preference by Similarity to an ideal Solution (TOPSIS) is widely used in multi-coupling objective optimization. However, this method lacks objective standards for determining the weights of decision makers (DMs) and assigning weights to evaluation criteria, which will affect the rationality and accuracy of the decision-making results. Therefore, a multi-scenario group decision-making model based on TOPSIS is proposed in this paper. Based on their individual characteristics, different DMs are assigned with different weights; four group decision-making scenarios are established with different weighting methods of criteria for different scenarios proposed, aiming to enhance objectivity and efficiency in the determination of decision-makers weight and the weighting process of criteria and consequently improve accuracy of group decision-making results. The proposed multi-scenario group decision-making model is applied to the optimization of deep hole drilling processing, and better processing parameters are obtained, which verifies the effectiveness and practicability of the group decision making model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data is presented in the manuscript.

References

  1. Hwang, C.L.; Masud, A.S.M.: Multiple Objective Decision Making—Methods and Applications: A State-of-the-Art Survey, Vol. 164. Springer Science & Business Media, Cham (2012)

    Google Scholar 

  2. Belenson, S.M.; Kapur, K.C.: An algorithm for solving multicriterion linear programming problems with examples. J. Oper. Res. Soc. 24(1), 65–77 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Milan, Z.: A concept of compromise solutions and the method of the displaced ideal. Comput. Oper. Res. 1(3–4), 479–496 (1974)

    Google Scholar 

  4. Hwang, C.L.; Yoon, K.: Multiple Attribute Decision Making. Springer, Berlin Heidelberg (1981)

    Book  MATH  Google Scholar 

  5. Cheng, S.; Christine, W.C.; Guo, H.H.: Using multiple criteria decision analysis for supporting decision of solid waste management. J. Environ. Sci. Heal. A. Part A 37(6), 975–990 (2002)

    Article  Google Scholar 

  6. Kim, G.; Chan, S.P.; Yoon, K.P.: Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. Int. J. Prod Econ. 50(1), 23–33 (1997)

    Article  Google Scholar 

  7. Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S.: Multi-attribute decision making: a simulation comparison of selection methods. Eur. J. Oper. Res. 107, 507–529 (1998)

    Article  MATH  Google Scholar 

  8. Chen, M.F.; Tzeng, G.H.: Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Math. Comput. Mode. 40(13), 1473–1490 (2004)

    Article  MATH  Google Scholar 

  9. Janic, M.: Multicriteria evaluation of high-speed rail, transrapid Maglev and air passenger transport in Europe. Transp. Plan. Techn. 26(6), 491–512 (2003)

    Article  Google Scholar 

  10. Kwong, C.K.; Tam, S.M.: Case-based reasoning approach to concurrent design of low power transformers. J. Mater. Process. Tech. 128(1–3), 136–141 (2002)

    Article  Google Scholar 

  11. Milani, A.S.; Shanian, A.; Madoliat, R.; Nemes, J.A.: The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Struct. Multidiscipl. Optim. 29(4), 312–318 (2004)

    Article  Google Scholar 

  12. Srdjevic, B.; Medeiros, Y.; Faria, A.S.: An objective multi-criteria evaluation of water management scenarios. Water. Resour. Manag. 18(1), 35–54 (2004)

    Article  Google Scholar 

  13. Yang, T.; Chou, P.: Solving a multiresponse simulation–optimization problem with discrete variables using a multi-attribute decision-making method. Math. Comput. Simulat. 68, 9–21 (2005)

    Article  MATH  Google Scholar 

  14. Yoon, K.; Hwang, C.L.: Manufacturing plant location analysis by multiple attribute decision making: part I—single-plant strategy. Int. J. Prod. Res. 23, 345–359 (1985)

    Article  MATH  Google Scholar 

  15. Jahan, A.; Bahraminasab, M.; Edwards, K.L.: A target-based normalization technique for materials selection. Mater. Design 35, 647–654 (2012)

    Article  Google Scholar 

  16. Mir, M.A.; Ghazvinei, P.T.; Sulaiman, N.M.N.; Basri, N.E.A.; Saheri, S.; Mahmood, N.Z.; Jahan, A.; Begum, R.A.; Aghamohammadi, N.: Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model. J. Environ. Manag. 166, 109–115 (2016)

    Article  Google Scholar 

  17. Alemi-Ardakani, M.; Milan, A.S.; Yannacopoulos, S.; Shokouhi, G.: On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert. Syst. Appl. 46, 426–438 (2016)

    Article  Google Scholar 

  18. Peng, W.; Zhouquan, Z.; Yonghu, W.: A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Inform. Sciences. 345, 27–45 (2016)

    Article  Google Scholar 

  19. Deng Feng, L.: TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. Ieee. T. Fuzzy. Syst. 18(2), 299–311 (2018)

    Google Scholar 

  20. Shyi-Ming, C.; Li-Wei, L.; Hsiang-Chuan, L.; Szu-Wei, Y.: Multiattribute decision making based on interval-valued intuitionistic fuzzy values. Expert. Syst. Appl. 39, 10343–10351 (2012)

    Article  Google Scholar 

  21. Hsu-Shih, S.; Huan-Jyh, S.; Stanley Lee, E.: An extension of TOPSIS for group decision making. Math. Comput. Mode. 45, 801–813 (2007)

    Article  MATH  Google Scholar 

  22. Jahan, A.; Mustapha, F.; Sapuan, S.M.; Ismail, M.Y.; Bahraminasab, M.: A framework for weighting of criteria in ranking stage of material selection process. Int. J. Adv. Manuf. Tech. 58(1–4), 411–420 (2012)

    Article  Google Scholar 

  23. Zhongliang, Y.: A method for group decision-making based on determining weights of DMs using TOPSIS. Appl. Math. Model. 35, 1926–1936 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Banaeian, N.; Mobli, H.; Fahimnia, B.; Nielsen, I.E.; Omid, M.: Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry. Comput. Oper. Res. 89, 337–347 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saaty, T.L.; Ozdemir, M.S.: Why the magic number seven plus or minus two. Math. Comput. Mode. 38(3–4), 233–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ganesh, R.: Group preference aggregation methods employed in AHP: an evaluation and an intrinsic process for deriving members’ weightages. Eur. J. Oper. Res. 79, 249–265 (1994)

    Article  MATH  Google Scholar 

  27. Honert, R.: Decisional power in group decision making: a note on the allocation of group members’ weights in the multiplicative AHP and smart. Group. Decis. Negot. 10(3), 275–286 (2001)

    Article  Google Scholar 

  28. Lotfi, F.H.; Reza, F.: Imprecise Shannon’s entropy and multi attribute decision making. Entropy 12(1), 53–62 (2010)

    Article  MATH  Google Scholar 

  29. Dehghan-Manshadi, B.; Mahmudi, H.; AbedianaR Mahmudi, A.: A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method. Mater. Design 28, 8–15 (2007)

    Article  Google Scholar 

  30. Bharani Chandar, J.; Nagarajan, L.; Sivakumar, M.: Recent research progress in deep hole drilling process: a review. Surf Rev Lett (2021). https://doi.org/10.1142/S0218625X21300033

    Article  Google Scholar 

  31. Biermann, D.; Bleicher, F.; Heisel, U.; Klocke, F.; Möhring, H.C.; Shih, A.: Deep hole drilling. CIRP Ann. Manuf. Technol. 22, 673–694 (2018)

    Article  Google Scholar 

  32. Ben Hong, L.; Zhi, L.; Hao, W.; Zao, S.Z.: Study on the stainless steel 1cr18ni9ti micro-hole drilling experiment. Appl. Mech. Mater. 596, 43–46 (2014)

    Article  Google Scholar 

  33. Odibat, Z.M.; Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 52075350) and the Special City School Strategic Cooperation Project of Sichuan University and Yibin (2020CDYB-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqiang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to Participate

The authors declare that they all consented to participate in this research.

Consent for Publication

The authors declare that they all consented to the publication of the manuscript.

Ethical Approval

The authors declare that there are no ethical issues involved in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Li, W., Ling, S. et al. Multi-scenario Group Decision-Making Based on TOPSIS for Deep Hole Drill Parameter Optimization. Arab J Sci Eng 47, 15779–15795 (2022). https://doi.org/10.1007/s13369-022-06777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06777-7

Keywords

Navigation