Skip to main content

Slope Instability of Continental Margins

  • Chapter
Ocean Margin Systems

Abstract

Giant submarine landslides occur on almost every contintental margin. Individual slides involve up to 20,000 km3 of slope material and cover an area of up to 113,000 km2. Their wide spread distribution and their large dimensions make them important geological features, particularly as many of them are located within hydrocarbon exploration areas. The factors that are controlling slope stability are still poorly understood in spite of significant research efforts, and there are only few landslides for which the trigger is known with certainty. It appears that ground motion due to earthquakes, rapid sedimentation, and slope destabilization by gas hydrates are among the most important factors, whereas slope angles seem to be less important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Booth JS, Winters WJ, Dillon WP (2000) Circumstantial evidence of gas hydrate and slope failure as-sociations on the United States Atlantic continental margin. Ann NY Ac Sci 714:487–489

    Google Scholar 

  • Bouma AH, Roberts HH, Coleman JM (1992) Late Neogene Louisiana continental margin construction timed by sea-level uctuations. In: Watkins JS, Zhiqiang F, McMillen KJ (eds) Geology and Geophysics of Continental Margins. AAPG Memoir 53:333–341

    Google Scholar 

  • Bouriak S, Vanneste M, Saoutkine A (2000) Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway. Mar Geol 163:125–148

    Article  Google Scholar 

  • Bugge T, Belderson RH, Kenyon NH (1988) The Storegga Slide. Philos Trans R Soc London 325: 357–388

    Article  Google Scholar 

  • Byrkjeland U, Bungum H, Eldholm O (2000) Seismotectonics of the Norwegian continental margin. J Geophys Res 105 (B3):6221–6236

    Article  Google Scholar 

  • Coleman JM, Prior DB, Lindsay J (1983) Deltaic influences on shelf edge instability processes. In: Stanley DJ, Moore GT (eds) The Shelf Break: Critical Interface on Continental Margins. SEPM Spec Publ 33:121–137

    Google Scholar 

  • Dillon WP, Danforth WW, Hutchinson DR, Drury RM, Taylor MH, Booth JS (1998) Evidence for faulting related to dissociation of gas hydrate and release of methane on the southeastern United States. In: Henriet JP, Mienert J (eds) Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geol Soc London Spec Publ 137:293–302

    Google Scholar 

  • Dimakis P, Elverhøi A, Høeg K, Solheim A, Harbitz C, Laberg JS, Vorren TO, Marr J(2000) Submarine slope stability on high-latitude glaciated Svalbard-Barents Sea margin. Mar Geol 162:303–316

    Google Scholar 

  • Dingle RV (1977) The anatomy of a large submarine slump on a sheared continental margin (SE Africa). J Geol Soc London 134:293–310

    Article  Google Scholar 

  • Dingle RV (1980) Sedimentary basins on the continental margins of southern Africa; an assessment of their hydrocarbon potential. Erdöl Kohle Erdgas Petrochem 33 (10) :447–463

    Google Scholar 

  • Dupperet A, Bourgois J, Lagabrielle Y, Suess E (1995) Slope instabilities at an active continental margin: Large-scale polyphase submarine slides along the northern Peruvian margin between 5° S and 6° S. Mar Geol 122:303–328

    Article  Google Scholar 

  • Elverhøi A et al. (1997) On the origin and flow behavior of submarine slides on deep-sea fans along the Norwegian-Barents Sea continental margin. Geo-Mar Lett 17:119–125

    Article  Google Scholar 

  • Embley RW (1975) Studies of the deep-sea sedimentation processes using high frequency seismic data. Thesis, Columbia University, New York

    Google Scholar 

  • Embley RW, Jacobi R (1977) Distribution and morphology of large sediment slides and slumps on Atlantic continental margins. Mar Geotech 2:205–227

    Article  Google Scholar 

  • Evans D, King EL, Kenyon NH, Brett C, Wallis D (1996) Evidence for long-term instability in the Storegga Slide region of western Norway. Mar Geol 130:281–292

    Article  Google Scholar 

  • Faugeres JC, Gonthier E, Grousset F, Poutier J (1981) The Feni Drift; the importance and meaning of slump deposits on the eastern slope of the Rockall Bank. Mar Geol 40 (3–4):49–57

    Article  Google Scholar 

  • Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quat Sci Rev 19:1413–1422

    Google Scholar 

  • Gutmacher C, Normark W (1993) Sur submarine slide, a deep-water sediment slope failure. US Geol Surv Bull 2002:158–166

    Google Scholar 

  • Haflidason H, Sejrup HP, Bryn P, Lien R (2001) The Storegga Slide, Chronology and flow mechanism, XI Europ U Geosci meeting, 8–12 April, Strasbourg, France, Journal of conference, Abstract 6 (1), p 740

    Google Scholar 

  • Hampton M, Lee H, Locat J(1996) Submarine landslides. Rev Geophys 34 (1):33–59

    Article  Google Scholar 

  • Hovland M, Judd AG (1988) Seabed Pockmarks and Seepages. Impact on Biology, Geology and the Environment. Graham and Trotman, London

    Google Scholar 

  • Huang X, Garcia MH (1999) Modeling of non-hydroplaning mud flows on continental slopes. Mar Geol 154 (1–4):132–142

    Google Scholar 

  • Jacobi RD (1976) Sediment slides on the northwestern continental margin of Africa. Mar Geol 22 (3):157–173

    Article  Google Scholar 

  • Keefer DK (1993) The susceptibility of rock slopes to earthquake-induced failure. Bull Int Assoc Eng Geol 30 (3):353–361

    Google Scholar 

  • King EL, Sejrup HP, Haflidason H, Elverhøi A, Aarseth I (1996) Quaternary seismic stratigraphy of the North Sea Fan: Glacially fed gravity flow aprons, hemipelagic sediments, and large submarine slides. Mar Geol 130:293–315

    Article  Google Scholar 

  • Laberg JS, Vorren TO (2000) The Trænadjupet Slide, offshore Norway — morphology, evacuation and triggering mechanisms. Mar Geol 171:95–114

    Article  Google Scholar 

  • Laberg JS, Vorren TO, Dowdeswell JA, Kenyon NH, Taylor J (2000) The Andøya Slide and the Andøya Canyon, north-eastern Norwegian-Greenland Sea. Mar Geol 162:259–275

    Article  Google Scholar 

  • Martinsen O (1994) Mass movements. In: Maltman A(ed) The Geological Deformation of Sediments. Chapman and Hall, London, pp 127–165

    Chapter  Google Scholar 

  • McAdoo B, Pratson LF, Orange D (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136

    Article  Google Scholar 

  • Mello UT, Pratson LF (1999) Regional slope stability and slope-failure mechanics from two-dimensional state of stress in an infinite slope. Mar Geol 154: 339–356

    Article  Google Scholar 

  • Mienert J, Posewang J, Baumann M (1998) Gas hydrates along the northeastern Atlantic margin: Possible hydrate-bound margin instabilities and possible release ofmethane. In: Henriet JP, Mienert J (eds) Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geol Soc London Spec Publ 137: 275–291

    Google Scholar 

  • Mienert J, Andreassen K, Posewang J, Lukas D (2000) Changes of the hydrate stability zone of the Norwegian Margin from glacial to interglacial times. Ann NY Ac Sci 912:200–210

    Article  Google Scholar 

  • Mohrig D, Elverhøi A, Parker G (1999) Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits. Mar Geol 154 (1–4):117–129

    Article  Google Scholar 

  • Moore GA, Curray JR, Emmel FJ, Yount JC (1976) Dynamic processes of upper Bengal Fan and Swatch of No Ground Canyon, Northeast Indian Ocean. AAPG Bull 60 (4):699

    Google Scholar 

  • Papantheodorou G, Ferentinos G (1997) Submarine and coastal sediment failure triggered by the 1995, Ms = 6.1 R Aegion earthquake, Gulf of Corinth, Greece. Mar Geol 137:287–304

    Article  Google Scholar 

  • Paull CK, Buelow WJ, Ussler III. W, Borowski WS (1996) Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology 24 (2):143–146

    Article  Google Scholar 

  • Piper DJW, Pirmez C, Manley PL, Long D, Flood RD, Normark WR, Showers W (1997) Mass-transport deposits of the Amazon Fan. Proc. Ocean Drill Program Sci Results 155:109–146

    Google Scholar 

  • Piper DJW, Cochonat P, Morrison M (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentol 46:79–97

    Article  Google Scholar 

  • Posewang J, Mienert J (1999) The enigma of double BSRs: Indicators for changes in the hydrate stability field? Geo-Mar Lett 19:157–163

    Article  Google Scholar 

  • Rothwell RG, Thomson J, Kähler G (1998) Low-sealevel emplacement of a very large Late Pleistocene “mega-trubidite” in the western Mediterranean Sea. Nature 392 (26):377–380

    Article  Google Scholar 

  • Ruddiman WF et al (1987) Proc Ocean Drill Program Initial Rep, vol 94

    Google Scholar 

  • Scheidegger A (1982) On the tectonic setting of submarine landslides. In: Saxov S (ed) Marine Slides and other Mass Movements. Plenum Press, New York, pp 11–20

    Chapter  Google Scholar 

  • Schwab WC, Lee HJ (1986) Causes of varied slope fail- ure types in clayey silt, Northeast Gulf of Alaska continental shelf, in Abstracts presented at the SEPM Midyear Meeting. vol. 3. pp 99–100

    Google Scholar 

  • Schwab WC, Lee HJ (1988) Causes of two slope-failure types in continental-shelf sediment, northeastern Gulf of Alaska. J Sediment Petrol 58(1) :1–11

    Google Scholar 

  • Spudich P, Orcutt J (1982) Estimation of earthquake ground motions relevant to the triggering of marine mass movements. In: Saxov S (ed) Marine Slides and other Mass Movements. Plenum Press, New York, pp 219–231

    Chapter  Google Scholar 

  • Stow DAV, Mayall M (2000) Deep-water sedimentary systems: New models for the 21st century. Mar Petrol Geol 17:125–135

    Article  Google Scholar 

  • Summerhayes CP, Bornhold BD, Embley RW (1979) Surficial slides and slumps on the continental slope and rise of South West Africa; a reconnaissance study. Mar Geol 31 (3–4):265–277

    Article  Google Scholar 

  • Trincardi F, Argnani A (1990) Gela submarine slide: A major basin-wide event in the Plio-Quaternary foredeep of Sicily. Geo-Mar Lett 10:13–21

    Article  Google Scholar 

  • Vorren TO, Laberg JS (1997) Trough mouth fans — palaeoclimate and icesheet monitors. Quat Sci Rev 16:865–881

    Article  Google Scholar 

  • Vorren TO, Laberg JS, Blaume F, Dowdeswell JA, Kenyon NH, Mienert J, Rumohr J, Werner F (1998) The Norwegian-Greenland Sea continental margins: Morphology and late Quarternary sedimentary processes and environment. Quat Sci Rev 17:273–302

    Article  Google Scholar 

  • Weaver PPE, Rothwell RG, Ebbing J, Gunn D, Hunter PM (1992) The geochemistry of North Atlantic abyssal plains. Mar Geol 109 (1–2):1–20

    Article  Google Scholar 

  • Wynn R, Masson D, Stow D, Weaver PPE (2000) The northwest African slope apron: A modern analogue for deep-water systems with complex seafloor topo-graphy. Mar Geol 17:253–265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mienert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mienert, J., Berndt, C., Laberg, J.S., Vorren, T.O. (2002). Slope Instability of Continental Margins. In: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., van Weering, T.C.E. (eds) Ocean Margin Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05127-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05127-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07872-9

  • Online ISBN: 978-3-662-05127-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics