Skip to main content

Advertisement

Log in

Vascular mimicry: changing the therapeutic paradigms in cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer is a major problem in the health system, and despite many efforts to effectively treat it, none has yet been fully successful. Angiogenesis and metastasis are considered as major challenges in the treatment of various cancers. Researchers have struggled to succeed with anti-angiogenesis drugs for the effective treatment of cancer, although new challenges have emerged in the treatment with the emergence of resistance to anti-angiogenesis and anti-metastatic drugs. Numerous studies have shown that different cancers can resist anti-angiogenesis drugs in a new process called vascular mimicry (VM). The studies have revealed that cells resistant to anti-angiogenesis cancer therapies are more capable of forming VMs in the in vivo and in vitro environment, although there is a link between the presence of VM and poor clinical outcomes. Given the importance of the VM in the challenges facing cancer treatment, researchers are trying to identify factors that prevent the formation of these structures. In this review article, it is attempted to provide a comprehensive overview of the molecules and main signaling pathways involved in VM phenomena, as well as the agents currently being identified as anti-VM and the role of VM in response to treatment and prognosis of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, Bao C, Xu L, Pan J, Cheng J (2017) MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 8(70):115787

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lc V, Chen W, Hong L, Mirshahi F, Mishal Z, Mirshahi-Khorassani T, Vannier J-P, Soria J, Soria C (2001) Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its anti-angiogenic effect. FEBS Lett 495(3):159–166

    Article  Google Scholar 

  3. Maroufi NF, Rashidi MR, Vahedian V, Akbarzadeh M, Fattahi A, Nouri M (2019) Therapeutic potentials of Apatinib in cancer treatment: possible mechanisms and clinical relevance. Life Sci 241:117106

    Article  CAS  Google Scholar 

  4. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q (2013) Tumor vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 49(18):3914–3923

    Article  PubMed  Google Scholar 

  6. Su M, Feng Y-J, Yao L-Q, Cheng M-J, Xu C-J, Huang Y, Zhao Y-Q, Jiang H (2008) Plasticity of ovarian cancer cell SKOV3ip and vasculogenic mimicry in vivo. Int J Gynecol Cancer 18(3):476–486

    Article  CAS  PubMed  Google Scholar 

  7. Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P (2005) Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res 7(4):R422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu R, Yang K, Meng C, Zhang Z, Xu Y (2012) Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Ther 13(7):527–533

    Article  CAS  PubMed  Google Scholar 

  9. Delgado-Bellido D, Fernández-Cortés M, Rodríguez MI, Serrano-Sáenz S, Carracedo A, Garcia-Diaz A, Oliver FJ (2019) VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death Differ 26(2):348

    Article  CAS  PubMed  Google Scholar 

  10. Guo J-Q, Zheng Q-H, Chen H, Chen L, Xu J-B, Chen M-Y, Lu D, Wang Z-H, Tong H-F, Lin S (2014) Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VE-cadherin/EphA2/MMP9/MMP2 expression. Int J Oncol 45(3):1065–1072

    Article  PubMed  CAS  Google Scholar 

  11. Zhang S, Zhang D, Sun B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254(2):157–164

    Article  CAS  PubMed  Google Scholar 

  12. Pradip D, Jennifer C, Brian L, Nandini D (2013) Wnt-β-catenin pathway regulates vascular mimicry in triple negative breast cancer. J Cytol Histol 4:198

    Google Scholar 

  13. Paulis YW, Soetekouw PM, Verheul HM, Tjan-Heijnen VC (1806) Griffioen AW (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta Rev Cancer 1:18–28

    Google Scholar 

  14. Zhang X, Zhang J, Zhou H, Fan G, Li Q (2019) Molecular mechanisms and anticancer therapeutic strategies in vasculogenic mimicry. J Cancer 10(25):6327–6340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang S-Y, Ke Y-Q, Lu G-H, Song Z-H, Yu L, Xiao S, Sun X-L, Jiang X-D, Yang Z-L, Hu C-C (2013) Vasculogenic mimicry is a prognostic factor for postoperative survival in patients with glioblastoma. J Neuro-oncol 112(3):339–345

    Article  CAS  Google Scholar 

  16. Chen L, He Y, Sun S, Sun B, Tang X (2015) Vasculogenic mimicry is a major feature and novel predictor of poor prognosis in patients with orbital rhabdomyosarcoma. Oncol Lett 10(3):1635–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baeten CI, Hillen F, Pauwels P, de Bruine AP, Baeten CG (2009) Prognostic role of vasculogenic mimicry in colorectal cancer. Dis Colon Rectum 52(12):2028–2035

    Article  PubMed  Google Scholar 

  18. You X, Wang Y, Wu J, Liu Q, Chen D, Tang D, Wang D (2018) Prognostic significance of galectin-1 and vasculogenic mimicry in patients with gastric cancer. Oncotargets Ther 11:3237

    Article  Google Scholar 

  19. Shen Y, Quan J, Wang M, Li S, Yang J, Lv M, Chen Z, Zhang L, Zhao X, Yang J (2017) Tumor vasculogenic mimicry formation as an unfavorable prognostic indicator in patients with breast cancer. Oncotarget 8(34):56408

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hess AR, Margaryan NV, Seftor EA, Hendrix MJ (2007) Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn Off Publ Am Assoc Anat 236(12):3283–3296

    CAS  Google Scholar 

  21. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun 320(4):1096–1102

    Article  CAS  PubMed  Google Scholar 

  22. Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJ (2001) Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61(17):6322–6327

    CAS  PubMed  Google Scholar 

  23. Xiao T, Zhong W, Zhao J, Qian B, Liu H, Chen S, Qiao K, Lei Y, Zong S, Wang H (2018) Polyphyllin I suppresses the formation of vasculogenic mimicry via Twist1/VE-cadherin pathway. Cell Death Dis 9(9):906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lu X-S, Sun W, Ge C-Y, Zhang W-Z, Fan Y-Z (2013) Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol 42(6):2103–2115

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J-T, Sun W, Zhang W-Z, Ge C-Y, Liu Z-Y, Zhao Z-M, Lu X-S, Fan Y-Z (2014) Norcantharidin inhibits tumor growth and vasculogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway. BMC Cancer 14(1):193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, Oliver FJ (2017) Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 16(1):65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Frank NY, Schatton T, Kim S, Zhan Q, Wilson BJ, Ma J, Saab KR, Osherov V, Widlund HR, Gasser M, Waaga-Gasser AM, Kupper TS, Murphy GF, Frank MH (2011) VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res 71(4):1474–1485. https://doi.org/10.1158/0008-5472.can-10-1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv J, Sun B, Sun H, Zhang Y, Sun J, Zhao X, Gu Q, Dong X, Che N (2017) Significance of vasculogenic mimicry formation in gastric carcinoma. Oncol Res Treat 40(1–2):35–41. https://doi.org/10.1159/000455144

    Article  CAS  PubMed  Google Scholar 

  29. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437(2):169–183. https://doi.org/10.1042/bj20110301

    Article  CAS  PubMed  Google Scholar 

  30. Vartanian A, Stepanova E, Grigorieva I, Solomko E, Baryshnikov A, Lichinitser M (2011) VEGFR1 and PKCalpha signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner. Melanoma Res 21(2):91–98. https://doi.org/10.1097/CMR.0b013e328343a237

    Article  CAS  PubMed  Google Scholar 

  31. Lugano R, Ramachandran M, Dimberg A (2019) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(9):1–26

    Google Scholar 

  32. Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J (2006) Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res 66(21):10315–10324. https://doi.org/10.1158/0008-5472.can-06-1560

    Article  CAS  PubMed  Google Scholar 

  33. Biondani G, Zeeberg K, Greco MR, Cannone S, Dando I, Dalla Pozza E, Mastrodonato M, Forciniti S, Casavola V, Palmieri M, Reshkin SJ, Cardone RA (2018) Extracellular matrix composition modulates PDAC parenchymal and stem cell plasticity and behavior through the secretome. FEBS J 285(11):2104–2124. https://doi.org/10.1111/febs.14471

    Article  CAS  PubMed  Google Scholar 

  34. Yao X, Ping Y, Liu Y, Chen K, Yoshimura T, Liu M, Gong W, Chen C, Niu Q, Guo D, Zhang X, Wang JM, Bian X (2013) Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by glioma stem-like cells. PLoS ONE 8(3):e57188–e57188. https://doi.org/10.1371/journal.pone.0057188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu H-B, Yang S, Weng H-Y, Chen Q, Zhao X-L, Fu W-J, Niu Q, Ping Y-F, Wang JM, Zhang X (2017) Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Autophagy 13(9):1528–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spinella F, Caprara V, Di Castro V, Rosano L, Cianfrocca R, Natali PG, Bagnato A (2013) Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. J Mol Med (Berl Ger) 91(3):395–405. https://doi.org/10.1007/s00109-012-0956-2

    Article  CAS  Google Scholar 

  37. Xu X, Zong Y, Gao Y, Sun X, Zhao H, Luo W, Jia S (2019) VEGF induce vasculogenic mimicry of choroidal melanoma through the PI3K signal pathway. Biomed Res Int. https://doi.org/10.1155/2019/3909102

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lissitzky J-C, Parriaux D, Ristorcelli E, Vérine A, Lombardo D, Verrando P (2009) Cyclic AMP signaling as a mediator of vasculogenic mimicry in aggressive human melanoma cells in vitro. Cancer Res 69(3):802–809

    Article  CAS  PubMed  Google Scholar 

  39. Huang B, Xiao E, Huang M (2015) MEK/ERK pathway is positively involved in hypoxia-induced vasculogenic mimicry formation in hepatocellular carcinoma which is regulated negatively by protein kinase A. Med Oncol 32(1):408

    Article  PubMed  CAS  Google Scholar 

  40. Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31(12):680–686

    Article  CAS  PubMed  Google Scholar 

  41. Almenar-Queralt A, Kim SN, Benner C, Herrera CM, Kang DE, Garcia-Bassets I, Goldstein LS (2013) Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation. J Biol Chem 288(49):35222–35236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yurugi-Kobayashi T, Itoh H, Schroeder T, Nakano A, Narazaki G, Kita F, Yanagi K, Hiraoka-Kanie M, Inoue E, Ara T (2006) Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arterioscler Thromb Vasc Biol 26(9):1977–1984

    Article  CAS  PubMed  Google Scholar 

  43. Topczewska JM, Postovit L-M, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJ (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12(8):925

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Zhang Z, Qian W, Ji D, Wang Q, Ji B, Zhang Y, Zhang C, Sun Y, Zhu C (2018) Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer. Oncotargets Ther 11:3765

    Article  Google Scholar 

  45. Maroufi NF, Hasegawa K, Vahedian V, Ahmad SNS, Zarebkohan A, Mazrakhondi SAM, Hosseini V, Rahbarghazi R (2020) A glimpse into molecular mechanisms of embryonic stem cells pluripotency: current status and future perspective. J Cell Physiol. https://doi.org/10.1002/jcp.29616

    Article  Google Scholar 

  46. De P, Carlson J, Leyland-Jones B, Dey N (2013) Wnt-β-catenin pathway regulates vascular mimicry in triple negative breast cancer. J Cytol Histol 4:198

    Google Scholar 

  47. Wang Q, Xu B, Du J, Xu X, Shang C, Wang X, Wang J (2018) MicroRNA-139-5p/Flt1/Wnt/β-catenin regulatory crosstalk modulates the progression of glioma. Int J Mol Med 41(4):2139–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Fu J, Xu D, Xu W, Wang S, Zhang L, Xiang Y (2016) Downregulation of Pygopus 2 inhibits vascular mimicry in glioma U251 cells by suppressing the canonical Wnt signaling pathway. Oncol Lett 11(1):678–684

    Article  CAS  PubMed  Google Scholar 

  49. Yang D-H, Yoon J-Y, Lee S-H, Bryja V, Andersson ER, Arenas E, Kwon Y-G, Choi K-Y (2009) Wnt5a is required for endothelial differentiation of embryonic stem cells and vascularization via pathways involving both Wnt/β-catenin and protein kinase Cα. Circ Res 104(3):372–379

    Article  CAS  PubMed  Google Scholar 

  50. Blanc E, Goldschneider D, Douc-Rasy S, Bénard J, Raguénez G (2005) Wnt-5a gene expression in malignant human neuroblasts. Cancer Lett 228(1–2):117–123

    Article  CAS  PubMed  Google Scholar 

  51. Bui T, Zhang L, Rees M, Bicknell R, Harris A (1997) Expression and hormone regulation of Wnt 2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer 75(8):1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ripka S, König A, Buchholz M, Wagner M, Sipos B, Klöppel G, Downward J, Gress T, Michl P (2007) WNT5A—target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 28(6):1178–1187

    Article  CAS  PubMed  Google Scholar 

  53. Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M (2003) Downregulation of Wnt4 and upregulation of Wnt5a expression by epithelial mesenchymal transition in human squamous carcinoma cells. Cancer Sci 94(7):593–597

    Article  CAS  PubMed  Google Scholar 

  54. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1(3):279–288

    Article  CAS  PubMed  Google Scholar 

  55. Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, French AD, Shah KV, Hewitt KJ, Rosenthal DT, Indig FE (2007) The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem 282(23):17259–17271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi H, Sun B, Zhao X, Du J, Gu Q, Liu Y, Cheng R, Dong X (2014) Wnt5a promotes vasculogenic mimicry and epithelial–mesenchymal transition via protein kinase Cα in epithelial ovarian cancer. Oncol Rep 32(2):771–779

    Article  PubMed  Google Scholar 

  57. Yao L, Sun B, Zhao X, Zhao X, Gu Q, Dong X, Zheng Y, Sun J, Cheng R, Qi H (2014) Overexpression of Wnt5a promotes angiogenesis in NSCLC. Biomed Res Int 2014:832562

    PubMed  PubMed Central  Google Scholar 

  58. Qi L, Song W, Liu Z, Zhao X, Cao W, Sun B (2015) Wnt3a Promotes the vasculogenic mimicry formation of colon cancer via wnt/β-catenin signaling. Int J Mol Sci 16(8):18564–18579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang W, Liu Y, Gao R, Xiu Z, Sun T (2019) Knockdown of cZNF292 suppressed hypoxic human hepatoma SMMC7721 cell proliferation, vasculogenic mimicry, and radio resistance. Cell Signal 60:122–135

    Article  CAS  PubMed  Google Scholar 

  60. Kim M, Jho E-H (2014) Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Rep 47(10):540–545. https://doi.org/10.5483/bmbrep.2014.47.10.177

    Article  PubMed  PubMed Central  Google Scholar 

  61. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  62. Park HW, Kim YC, Yu B, Moroishi T, Mo J-S, Plouffe SW, Meng Z, Lin KC, Yu F-X, Alexander CM (2015) Alternative Wnt signaling activates YAP/TAZ. Cell 162(4):780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei H, Wang F, Wang Y, Li T, Xiu P, Zhong J, Sun X, Li J (2017) Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci 108(3):478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Azad T, van Rensburg HJ, Lightbody E, Neveu B, Champagne A, Ghaffari A, Kay V, Hao Y, Shen H, Yeung B (2018) A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat Commun 9(1):1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Puerto-Camacho P, Amaral AT, Lamhamedi-Cherradi SE, Menegaz BA, Castillo-Ecija H, Ordonez JL, Dominguez S, Jordan-Perez C, Diaz-Martin J, Romero-Perez L, Lopez-Alvarez M, Civantos-Jubera G, Robles-Frias MJ, Biscuola M, Ferrer C, Mora J, Cuglievan B, Schadler K, Seifert O, Kontermann R, Pfizenmaier K, Simon L, Fabre M, Carcaboso AM, Ludwig JA, de Alava E (2019) Preclinical efficacy of endoglin-targeting antibody-drug conjugates for the treatment of Ewing sarcoma. Clin Cancer Res Off J Am Assoc Cancer Res 25(7):2228–2240. https://doi.org/10.1158/1078-0432.ccr-18-0936

    Article  Google Scholar 

  66. Yang J, Lu Y, Lin YY, Zheng ZY, Fang JH, He S, Zhuang SM (2016) Vascular mimicry formation is promoted by paracrine TGF-beta and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma. Cancer Lett 383(1):18–27. https://doi.org/10.1016/j.canlet.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  67. Ling G, Wang S, Song Z, Sun X, Liu Y, Jiang X, Cai Y, Du M, Ke Y (2011) Transforming growth factor-β is required for vasculogenic mimicry formation in glioma cell line U251MG. Cancer Biol Ther 12(11):978–988. https://doi.org/10.4161/cbt.12.11.18155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ling G, Ji Q, Ye W, Ma D, Wang Y (2016) Epithelial–mesenchymal transition regulated by p38/MAPK signaling pathways participates in vasculogenic mimicry formation in SHG44 cells transfected with TGF-beta cDNA loaded lentivirus in vitro and in vivo. Int J Oncol 49(6):2387–2398. https://doi.org/10.3892/ijo.2016.3724

    Article  CAS  PubMed  Google Scholar 

  69. Barcellos-de-Souza P, Comito G, Pons-Segura C, Taddei ML, Gori V, Becherucci V, Bambi F, Margheri F, Laurenzana A, Del Rosso M, Chiarugi P (2016) Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-beta1. Stem cells (Dayt Ohio) 34(10):2536–2547. https://doi.org/10.1002/stem.2412

    Article  CAS  Google Scholar 

  70. Yang Z, Sun B, Li Y, Zhao X, Zhao X, Gu Q, An J, Dong X, Liu F, Wang Y (2015) ZEB2 promotes vasculogenic mimicry by TGF-beta1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Exp Mol Pathol 98(3):352–359. https://doi.org/10.1016/j.yexmp.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  71. Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19(1):589–621. https://doi.org/10.1146/annurev.cellbio.19.041603.094522

    Article  CAS  PubMed  Google Scholar 

  72. Mulas C, Kalkan T, Smith A (2017) NODAL secures pluripotency upon embryonic stem cell progression from the ground state. Stem Cell Rep 9(1):77–91. https://doi.org/10.1016/j.stemcr.2017.05.033

    Article  Google Scholar 

  73. Linneberg-Agerholm M, Wong YF, Herrera JAR, Monteiro RS, Anderson KGV, Brickman JM (2019) Naïve human pluripotent stem cells respond to Wnt, Nodal, and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development. https://doi.org/10.1242/dev.180620

    Article  PubMed  Google Scholar 

  74. McAllister JC, Zhan Q, Weishaupt C, Hsu M-Y, Murphy GF (2010) The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts. J Cutan Pathol 37(Suppl 1):19–25. https://doi.org/10.1111/j.1600-0560.2010.01503.x

    Article  PubMed  PubMed Central  Google Scholar 

  75. Khalkhali-Ellis Z, Kirschmann DA, Seftor EA, Gilgur A, Bodenstine TM, Hinck AP, Hendrix MJ (2015) Divergence(s) in nodal signaling between aggressive melanoma and embryonic stem cells. Int J Cancer 136(5):E242–E251. https://doi.org/10.1002/ijc.29198

    Article  CAS  PubMed  Google Scholar 

  76. Gong W, Sun B, Zhao X, Zhang D, Sun J, Liu T, Gu Q, Dong X, Liu F, Wang Y (2016) Nodal signaling promotes vasculogenic mimicry formation in breast cancer via the Smad2/3 pathway. Oncotarget 7(43):70152

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xiao W, Gao Z, Duan Y, Yuan W, Ke Y (2017) Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res 36(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Liu J, Fukunaga-Kalabis M, Li L, Herlyn M (2014) Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys 563:13–21. https://doi.org/10.1016/j.abb.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  79. Gu Y, Masiero M, Banham AH (2016) Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget 7(20):29804

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vartanian A, Gatsina G, Grigorieva I, Solomko E, Dombrovsky V, Baryshnikov A, Stepanova E (2013) The involvement of Notch signaling in melanoma vasculogenic mimicry. Clin Exp Med 13(3):201–209. https://doi.org/10.1007/s10238-012-0190-9

    Article  CAS  PubMed  Google Scholar 

  81. Jue C, Lin C, Zhisheng Z, Yayun Q, Feng J, Min Z, Haibo W, Youyang S, Hisamitsu T, Shintaro I (2017) Notch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling. Oncotarget 8(2):2501

    Article  PubMed  Google Scholar 

  82. Hardy KM, Kirschmann DA, Seftor EA, Margaryan NV, Postovit LM, Strizzi L, Hendrix MJ (2010) Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Res 70(24):10340–10350. https://doi.org/10.1158/0008-5472.can-10-0705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cheng R, Cai X-R, Ke K, Chen Y-L (2017) Notch4 inhibition suppresses invasion and vasculogenic mimicry formation of hepatocellular carcinoma cells. Curr Med Sci 37(5):719–725. https://doi.org/10.1007/s11596-017-1794-9

    Article  CAS  Google Scholar 

  84. Wang Y, Yang R, Wang X, Ci H, Zhou L, Zhu B, Wu S, Wang D (2018) Evaluation of the correlation of vasculogenic mimicry, Notch4, DLL4, and KAI1/CD82 in the prediction of metastasis and prognosis in non-small cell lung cancer. Medicine (Baltim) 97(52):e13817–e13817. https://doi.org/10.1097/MD.0000000000013817

    Article  CAS  Google Scholar 

  85. Hsu M-Y, Yang MH, Schnegg CI, Hwang S, Ryu B, Alani RM (2017) Notch3 signaling-mediated melanoma–endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis. Lab Investig 97(6):725–736. https://doi.org/10.1038/labinvest.2017.1

    Article  CAS  PubMed  Google Scholar 

  86. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389

    Article  PubMed  PubMed Central  Google Scholar 

  87. Balamurugan K (2016) HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 138(5):1058–1066

    Article  CAS  PubMed  Google Scholar 

  88. Mao X-G, Xue X-Y, Wang L, Zhang X, Yan M, Tu Y-Y, Lin W, Jiang X-F, Ren H-G, Zhang W (2013) CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-oncology 15(7):865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Du J, Sun B, Zhao X, Gu Q, Dong X, Mo J, Sun T, Wang J, Sun R, Liu Y (2014) Hypoxia promotes vasculogenic mimicry formation by inducing epithelial–mesenchymal transition in ovarian carcinoma. Gynecol Oncol 133(3):575–583

    Article  CAS  PubMed  Google Scholar 

  90. Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X (2007) Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 249(2):188–197. https://doi.org/10.1016/j.canlet.2006.08.016

    Article  CAS  PubMed  Google Scholar 

  91. Zhao N, Sun B-C, Sun T, Ma Y-M, Zhao X-L, Liu Z-Y, Dong X-Y, Che N, Mo J, Gu Q (2012) Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Med Oncol 29(5):3599–3607

    Article  CAS  PubMed  Google Scholar 

  92. Maes H, Van Eygen S, Krysko D, Vandenabeele P, Nys K, Rillaerts K, Garg A, Verfaillie T, Agostinis P (2014) BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton. Cell Death Dis 5(3):e1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Misra RM, Bajaj MS, Kale VP (2012) Vasculogenic mimicry of HT1080 tumor cells in vivo: critical role of HIF-1alpha-neuropilin-1 axis. PLoS ONE 7(11):e50153. https://doi.org/10.1371/journal.pone.0050153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tang N-N, Zhu H, Zhang H-J, Zhang W-F, Jin H-L, Wang L, Wang P, He G-J, Hao B, Shi R-H (2014) HIF-1α induces VE-cadherin expression and modulates vasculogenic mimicry in esophageal carcinoma cells. World J Gastroenterol 20(47):17894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang M, Ke Y, Sun X, Yu L, Yang Z, Zhang Y, Du M, Wang J, Liu X, Huang S (2014) Mammalian target of rapamycin signaling is involved in the vasculogenic mimicry of glioma via hypoxia-inducible factor-1alpha. Oncol Rep 32(5):1973–1980. https://doi.org/10.3892/or.2014.3454

    Article  CAS  PubMed  Google Scholar 

  96. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    Article  CAS  PubMed  Google Scholar 

  97. Wang HF, Wang SS, Zheng M, Dai LL, Wang K, Gao XL, Cao MX, Yu XH, Pang X, Zhang M (2019) Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial–mesenchymal transition in salivary adenoid cystic carcinoma. Cell Prolif 52(3):e12600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Quail DF, Taylor MJ, Walsh LA, Dieters-Castator D, Das P, Jewer M, Zhang G, Postovit L-M (2011) Low oxygen levels induce the expression of the embryonic morphogen Nodal. Mol Biol Cell 22(24):4809–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo X, Xu S, Gao X, Wang J, Xue H, Chen Z, Zhang J, Guo X, Qian M, Qiu W (2017) Macrophage migration inhibitory factor promotes vasculogenic mimicry formation induced by hypoxia via CXCR4/AKT/EMT pathway in human glioblastoma cells. Oncotarget 8(46):80358

    Article  PubMed  PubMed Central  Google Scholar 

  100. Song Y-Y, Sun L-D, Liu M-L, Liu Z-L, Chen F, Zhang Y-Z, Zheng Y, Zhang J-P (2014) STAT3, p-STAT3 and HIF-1α are associated with vasculogenic mimicry and impact on survival in gastric adenocarcinoma. Oncol Lett 8(1):431–437. https://doi.org/10.3892/ol.2014.2059

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, Zhang Y, Dong X, Sun B (2017) HIF-1alpha promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res 36(1):60. https://doi.org/10.1186/s13046-017-0533-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li W, Zong S, Shi Q, Li H, Xu J, Hou F (2016) Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: Involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin. Sci Rep 6(1):37534. https://doi.org/10.1038/srep37534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Akbarzadeh M, Movassaghpour AA, Ghanbari H, Kheirandish M, Maroufi NF, Rahbarghazi R, Nouri M, Samadi N (2017) The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  104. Hess AR, Seftor EA, Seftor RE, Hendrix MJ (2003) Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res 63(16):4757–4762

    CAS  PubMed  Google Scholar 

  105. Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor RE, Hendrix MJ (2006) VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther 5(2):228–233

    Article  CAS  PubMed  Google Scholar 

  106. Chiablaem K, Lirdprapamongkol K, Keeratichamroen S, Surarit R, Svasti J (2014) Curcumin suppresses vasculogenic mimicry capacity of hepatocellular carcinoma cells through STAT3 and PI3K/AKT inhibition. Anticancer Res 34(4):1857–1864

    CAS  PubMed  Google Scholar 

  107. Choi EJ, Cho BJ, Lee DJ, Hwang YH, Chun SH, Kim HH, Kim IA (2014) Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases. BMC Cancer 14(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang X, Song Q, Wei C, Qu J (2015) LRIG1 inhibits hypoxia-induced vasculogenic mimicry formation via suppression of the EGFR/PI3K/AKT pathway and epithelial-to-mesenchymal transition in human glioma SHG-44 cells. Cell Stress Chaperones 20(4):631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li W, Zhou Y (2019) LRIG1 acts as a critical regulator of melanoma cell invasion, migration, and vasculogenic mimicry upon hypoxia by regulating EGFR/ERK-triggered epithelial–mesenchymal transition. Biosci Rep. https://doi.org/10.1042/BSR20181165

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang H, Lin H, Pan J, Mo C, Zhang F, Huang B, Wang Z, Chen X, Zhuang J, Wang D (2016) Vasculogenic mimicry in prostate cancer: the roles of EphA2 and PI3K. J Cancer 7(9):1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim HS, Won YJ, Shim JH, Kim HJ, Kim BS, Hong HN (2019) Role of EphA2-PI3K signaling in vasculogenic mimicry induced by cancer-associated fibroblasts in gastric cancer cells. Oncol Lett 18(3):3031–3038

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou Y-J, Ding R-L, Xie F, Fu S-Z, Wu J-B, Yang L-L, Wen Q-L (2018) In vitro and in vivo apatinib inhibits vasculogenic mimicry in melanoma MUM-2B cells. PLoS ONE 13(7):e0200845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Liu X, Wang JH, Li S, Li LL, Huang M, Zhang YH, Liu Y, Yang YT, Ding R, Ke YQ (2015) Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase/ERK–MMP–laminin5γ2 signaling pathway. Cancer Sci 106(7):857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci. https://doi.org/10.1242/jcs.208884

    Article  PubMed  Google Scholar 

  115. Thijssen VL, Heusschen R, Caers J (1855) Griffioen AW (2015) Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta Rev Cancer 2:235–247

    Google Scholar 

  116. Kaltner H, Toegel S, Caballero GG, Manning JC, Ledeen RW, Gabius H-J (2017) Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 147(2):239–256

    Article  CAS  PubMed  Google Scholar 

  117. Dong H, Wang Z-H, Zhang N, Liu S-D, Zhao J-J, Liu S-Y (2017) Serum Galectin-3 level, not Galectin-1, is associated with the clinical feature and outcome in patients with acute ischemic stroke. Oncotarget 8(65):109752–109761

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chung LY, Tang SJ, Sun GH, Chou TY, Yeh TS, Yu SL, Sun KH (2012) Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin Cancer Res Off J Am Assoc Cancer Res 18(15):4037–4047. https://doi.org/10.1158/1078-0432.ccr-11-3348

    Article  CAS  Google Scholar 

  119. Takano J, Morishita A, Fujihara S, Iwama H, Kokado F, Fujikawa K, Fujita K, Chiyo T, Tadokoro T, Sakamoto T (2016) Galectin-9 suppresses the proliferation of gastric cancer cells in vitro. Oncol Rep 35(2):851–860

    Article  CAS  PubMed  Google Scholar 

  120. Nangia-Makker P, Hogan V, Raz A (2018) Galectin-3 and cancer stemness. Glycobiology 28(4):172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mourad-Zeidan AA, Melnikova VO, Wang H, Raz A, Bar-Eli M (2008) Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol 173(6):1839–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D, Kohn-Gabet AE, Shi Y, Coetzee GA, Frenkel B (2010) Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 9:258. https://doi.org/10.1186/1476-4598-9-258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang X, Li L, Wu Y, Zhang R, Zhang M, Liao D, Wang G, Qin G, Xu RH, Kang T (2016) CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res 76(24):7277–7289. https://doi.org/10.1158/0008-5472.can-16-2100

    Article  CAS  PubMed  Google Scholar 

  124. Cao Z, Sun B, Zhao X, Zhang Y, Gu Q, Liang X, Dong X, Zhao N (2017) The expression and functional significance of runx2 in hepatocellular carcinoma: its role in vasculogenic mimicry and epithelial–mesenchymal transition. Int J Mol Sci 18(3):500

    Article  PubMed Central  CAS  Google Scholar 

  125. You X, Liu Q, Wu J, Wang Y, Dai J, Chen D, Zhou Y, Lian Y (2019) Galectin-1 promotes vasculogenic mimicry in gastric cancer by upregulating EMT signaling. J Cancer 10(25):6286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang K, Chen Z, Wu R, Yin J, Fan M, Xu X (2018) Prognostic role of high Gal-9 expression in solid tumors: a meta-analysis. Cell Physiol Biochem 45(3):993–1002

    Article  CAS  PubMed  Google Scholar 

  127. van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL, Griffioen AW (2015) The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 67(2):441. https://doi.org/10.1124/pr.114.010215

    Article  CAS  PubMed  Google Scholar 

  128. Boichuk S, Parry JA, Makielski KR, Litovchick L, Baron JL, Zewe JP, Wozniak A, Mehalek KR, Korzeniewski N, Seneviratne DS, Schöffski P, Debiec-Rychter M, DeCaprio JA, Duensing A (2013) The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis. Cancer Res 73(16):5120. https://doi.org/10.1158/0008-5472.CAN-13-0579

    Article  CAS  PubMed  Google Scholar 

  129. Zarrin B, Zarifi F, Vaseghi G, Javanmard SH (2017) Acquired tumor resistance to antiangiogenic therapy: mechanisms at a glance. J Res Med Sci 22:117. https://doi.org/10.4103/jrms.JRMS_182_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xu Y, Li Q, Li X-Y, Yang Q-Y, Xu W-W, Liu G-L (2012) Short-term anti-vascular endothelial growth factor treatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis. J Exp Clin Cancer Res 31(1):16. https://doi.org/10.1186/1756-9966-31-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu Y-L, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, Aghi MK (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72(7):1773–1783. https://doi.org/10.1158/0008-5472.CAN-11-3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Croci Diego O, Cerliani Juan P, Dalotto-Moreno T, Méndez-Huergo Santiago P, Mascanfroni Ivan D, Dergan-Dylon S, Toscano Marta A, Caramelo Julio J, García-Vallejo Juan J, Ouyang J, Mesri Enrique A, Junttila Melissa R, Bais C, Shipp Margaret A, Salatino M, Rabinovich Gabriel A (2014) Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156(4):744–758. https://doi.org/10.1016/j.cell.2014.01.043

    Article  CAS  PubMed  Google Scholar 

  133. Prieto-Domínguez N, Ordóñez R, Fernández A, García-Palomo A, Muntané J, González-Gallego J, Mauriz JL (2016) Modulation of autophagy by sorafenib: effects on treatment response. Front Pharmacol 7:151. https://doi.org/10.3389/fphar.2016.00151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309. https://doi.org/10.1016/j.ccr.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  135. Serova M, Tijeras-Raballand A, Dos Santos C, Martinet M, Neuzillet C, Lopez A, Mitchell DC, Bryan BA, Gapihan G, Janin A, Bousquet G, Riveiro ME, Bieche I, Faivre S, Raymond E, de Gramont A (2016) Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib. Oncotarget 7(25):38467–38486. https://doi.org/10.18632/oncotarget.9542

    Article  PubMed  PubMed Central  Google Scholar 

  136. Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian C-N, Kahnoski R, Futreal PA, Furge KA, Teh BT (2010) Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70(3):1063–1071. https://doi.org/10.1158/0008-5472.CAN-09-3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V, Nabissi M, Bonfili L, Eleuteri AM, Mozzicafreddo M, Burattini L, Berardi R, Cascinu S, Santoni G (2013) Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumor cells. Br J Cancer 109(4):1040–1050. https://doi.org/10.1038/bjc.2013.420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abdel-Aziz AK, Shouman S, El-Demerdash E, Elgendy M, Abdel-Naim AB (2014) Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic and angiogenic machineries. Chemico-Biol Interact 217:28–40. https://doi.org/10.1016/j.cbi.2014.04.007

    Article  CAS  Google Scholar 

  139. Giuliano S, Cormerais Y, Dufies M, Grépin R, Colosetti P, Belaid A, Parola J, Martin A, Lacas-Gervais S, Mazure NM, Benhida R, Auberger P, Mograbi B, Pagès G (2015) Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux. Autophagy 11(10):1891–1904. https://doi.org/10.1080/15548627.2015.1085742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ali MM, Janic B, Babajani-Feremi A, Varma NRS, Iskander ASM, Anagli J, Arbab AS (2010) Changes in vascular permeability and expression of different angiogenic factors following anti-angiogenic treatment in rat glioma. PLoS ONE 5(1):e8727. https://doi.org/10.1371/journal.pone.0008727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ali MM, Kumar S, Shankar A, Varma NRS, Iskander ASM, Janic B, Chwang WB, Jain R, Babajeni-Feremi A, Borin TF, Bagher-Ebadian H, Brown SL, Ewing JR, Arbab AS (2013) Effects of tyrosine kinase inhibitors and CXCR4 antagonist on tumor growth and angiogenesis in rat glioma model: MRI and protein analysis study. Transl Oncol 6(6):660–669. https://doi.org/10.1593/tlo.13559

    Article  PubMed  PubMed Central  Google Scholar 

  142. Angara K, Borin TF, Rashid MH, Lebedyeva I, Ara R, Lin P-C, Iskander A, Bollag RJ, Achyut BR, Arbab AS (2018) CXCR2-expressing tumor cells drive vascular mimicry in antiangiogenic therapy-resistant glioblastoma. Neoplasia 20(10):1070–1082. https://doi.org/10.1016/j.neo.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A-L, Latreche S, Bergaya S, Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita H, Tartour E, Taieb J, Terme M (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212(2):139. https://doi.org/10.1084/jem.20140559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Touboul T, Chen S, To CC, Mora-Castilla S, Sabatini K, Tukey RH, Laurent LC (2016) Stage-specific regulation of the WNT/β-catenin pathway enhances differentiation of hESCs into hepatocytes. J Hepatol 64(6):1315–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP, Bergers G (2017) Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med 9(385):eaak9679. https://doi.org/10.1126/scitranslmed.aak9679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu D, Yu X, Tian Y (2015) Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 19(2):315–326

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chen L-X, He Y-J, Zhao S-Z, Wu J-G, Wang J-T, Zhu L-M, Lin T-T, Sun B-C, Li X-R (2011) Inhibition of tumor growth and vasculogenic mimicry by curcumin through down-regulation of the EphA2/PI3K/MMP pathway in a murine choroidal melanoma model. Cancer Biol Ther 11(2):229–235

    Article  CAS  PubMed  Google Scholar 

  148. Paulis YWJ, Dinnes D, Soetekouw PMMB, Nelson PJ, Burdach S, Loewe RP, Tjan-Heijnen VCG, von Luettichau I, Griffioen AW (2012) Imatinib reduces the vasculogenic potential of plastic tumor cells. Curr Angiogenesis 1(1):64–71

    Article  CAS  Google Scholar 

  149. Zhang S, Li M, Gu Y, Liu Z, Xu S, Cui Y, Sun B (2008) Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma. J Exp Clin Cancer Res 27(1):60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Meng J, Sun B, Zhao X, Zhang D, Zhao X, Gu Q, Dong X, Zhao N, Liu P, Liu Y (2014) Doxycycline as an inhibitor of the epithelial-to-mesenchymal transition and vasculogenic mimicry in hepatocellular carcinoma. Mol Cancer Ther 13(12):3107–3122

    Article  CAS  PubMed  Google Scholar 

  151. van der Schaft DW, Seftor RE, Seftor EA, Hess AR, Gruman LM, Kirschmann DA, Yokoyama Y, Griffioen AW, Hendrix MJ (2004) Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 96(19):1473–1477

    Article  PubMed  Google Scholar 

  152. Xia Y, Cai X-Y, Fan J-Q, Zhang L-L, Ren J-H, Chen J, Li Z-Y, Zhang R-G, Zhu F, Wu G (2015) Rho kinase inhibitor fasudil suppresses the vasculogenic mimicry of B16 mouse melanoma cells both in vitro and in vivo. Mol Cancer Ther 14(7):1582–1590

    Article  CAS  PubMed  Google Scholar 

  153. Zhang J-G, Zhang D-D, Wu X, Wang Y-Z, Gu S-Y, Zhu G-H, Li X-Y, Li Q, Liu G-L (2015) Incarvine C suppresses proliferation and vasculogenic mimicry of hepatocellular carcinoma cells via targeting ROCK inhibition. BMC Cancer 15(1):814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Itzhaki O, Greenberg E, Shalmon B, Kubi A, Treves AJ, Shapira-Frommer R, Avivi C, Ortenberg R, Ben-Ami E, Schachter J (2013) Nicotinamide inhibits vasculogenic mimicry, an alternative vascularization pathway observed in highly aggressive melanoma. PLoS ONE 8(2):e57160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ruffini F, Graziani G, Levati L, Tentori L, D’Atri S, Lacal PM (2015) Cilengitide down modulates invasiveness and vasculogenic mimicry of neuropilin 1 expressing melanoma cells through the inhibition of αvβ5 integrin. Int J Cancer 136(6):E545–E558

    Article  CAS  PubMed  Google Scholar 

  156. Orecchia P, Conte R, Balza E, Pietra G, Mingari MC, Carnemolla B (2015) Targeting Syndecan-1, a molecule implicated in the process of vasculogenic mimicry, enhances the therapeutic efficacy of the L19-IL2 immunocytokine in human melanoma xenografts. Oncotarget 6(35):37426

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zhang C, Chen W, Zhang X, Huang B, Chen A, He Y, Wang J, Li X (2016) Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes. Sci Rep 6:23056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li X, Yang Z, Han Z, Wen Y, Ma Z, Wang Y (2018) Niclosamide acts as a new inhibitor of vasculogenic mimicry in oral cancer through upregulation of miR-124 and downregulation of STAT3. Oncol Rep 39(2):827–833

    CAS  PubMed  Google Scholar 

  159. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, Hendrix MJ (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181(4):1115–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Serwe A, Rudolph K, Anke T, Erkel G (2012) Inhibition of TGF-β signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Investig N Drugs 30(3):898–915

    Article  CAS  Google Scholar 

  161. Tu DG, Yu Y, Lee CH, Kuo YL, Lu YC, Tu CW, Chang WW (2016) Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol Lett 11(4):2934–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xu M-R, Wei P-F, Suo M-Z, Hu Y, Ding W, Su L, Zhu Y-D, Song W-J, Tang G-H, Zhang M (2019) Brucine suppresses vasculogenic mimicry in human triple-negative breast cancer cell line MDA-MB-231. Biomed Res Int. https://doi.org/10.1155/2019/6543230

    Article  PubMed  PubMed Central  Google Scholar 

  163. Cong R, Sun Q, Yang L, Gu H, Zeng Y, Wang B (2009) Effect of Genistein on vasculogenic mimicry formation by human uveal melanoma cells. J Exp Clin Cancer Res 28(1):124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Liu R, Cao Z, Tu J, Pan Y, Shang B, Zhang G, Bao M, Zhang S, Yang P, Zhou Q (2012) Lycorine hydrochloride inhibits metastatic melanoma cell-dominant vasculogenic mimicry. Pigment Cell Melanoma Res 25(5):630–638

    Article  CAS  PubMed  Google Scholar 

  165. Cao Z, Yu D, Fu S, Zhang G, Pan Y, Bao M, Tu J, Shang B, Guo P, Yang P (2013) Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol Lett 218(2):174–185

    Article  CAS  PubMed  Google Scholar 

  166. Hu L, Fan Z-Y, Wang H-X, Zhu Z-L, Cao S, Wu X-Y, Li J-F, Su L-P, Li C, Zhu Z-G (2017) Luteolin suppresses gastric cancer progression by reversing epithelial–mesenchymal transition via suppression of the Notch signaling pathway. J Transl Med 15(1):52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Han H, Du L, Cao Z, Zhang B, Zhou Q (2018) Triptonide potently suppresses pancreatic cancer cell-mediated vasculogenic mimicry by inhibiting expression of VE-cadherin and chemokine ligand 2 genes. Eur J Pharmacol 818:593–603

    Article  CAS  PubMed  Google Scholar 

  168. Yao N, Ren K, Wang Y, Jin Q, Lu X, Lu Y, Jiang C, Zhang D, Lu J, Wang C (2017) Paris polyphylla suppresses proliferation and vasculogenic mimicry of human osteosarcoma cells and inhibits tumor growth in vivo. Am J Chin Med 45(03):575–598

    Article  PubMed  Google Scholar 

  169. Luan Y-Y, Liu Z-M, Zhong J-Y, Yao R-Y, Yu H-S (2015) Effect of grape seed proanthocyanidins on tumor vasculogenic mimicry in human triple-negative breast cancer cells. Asian–Pac J Cancer Prev 16(2):531–535

    Article  PubMed  Google Scholar 

  170. Jue C, Min Z, Zhisheng Z, Lin C, Yayun Q, Xuanyi W, Feng J, Haibo W, Youyang S, Tadashi H (2017) COE inhibits vasculogenic mimicry in hepatocellular carcinoma via suppressing Notch1 signaling. J Ethnopharmacol 208:165–173

    Article  PubMed  CAS  Google Scholar 

  171. Xiao T, Zhong W, Zhao J, Qian B, Liu H, Chen S, Qiao K, Lei Y, Zong S, Wang H (2018) Polyphyllin I suppresses the formation of vasculogenic mimicry via Twist1/VE-cadherin pathway. Cell Death Dis 9(9):1–14

    Article  CAS  Google Scholar 

  172. Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S, Barghi S, Maroufi NF, Taheri RA (2018) Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif Cells Nanomed Biotechnol 46(Sup 1):283–292

    Article  CAS  PubMed  Google Scholar 

  173. Tupal A, Sabzichi M, Bazzaz R, Fathi Maroufi N, Mohammadi M, Pirouzpanah SM, Ramezani F (2019) Application of ɑ-tocotrienol-loaded biocompatible precirol in attenuation of doxorubicin dose-dependent behavior in HUH-7 hepatocarcinoma cell line. Nutr Cancer 72(4):1–9

    Google Scholar 

  174. Maroufi NF, Vahedian V, Mazrakhondi SAM, Kooti W, Khiavy HA, Bazzaz R, Ramezani F, Pirouzpanah SM, Ghorbani M, Akbarzadeh M (2019) Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn-Schmiedeberg’s Arch Pharmacol 393(1):1–11

    Article  CAS  Google Scholar 

  175. Ghorbani M, Mahmoodzadeh F, Jannat B, Fathi NM, Hashemi B, Roshangar L (2019) Glutathione and pH-responsive fluorescent nanogels for cell imaging and targeted methotrexate delivery. Polym Adv Technol 30(7):1847–1855

    Article  CAS  Google Scholar 

  176. Ju R-J, Li X-T, Shi J-F, Li X-Y, Sun M-G, Zeng F, Zhou J, Liu L, Zhang C-X, Zhao W-Y (2014) Liposomes, modified with PTDHIV-1 peptide, containing epirubicin and celecoxib, to target vasculogenic mimicry channels in invasive breast cancer. Biomaterials 35(26):7610–7621

    Article  CAS  PubMed  Google Scholar 

  177. Zeng F, Ju R-J, Liu L, Xie H-J, Mu L-M, Zhao Y, Yan Y, Hu Y-J, Wu J-S, Lu W-L (2015) Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer. Oncotarget 6(34):36625

    Article  PubMed  PubMed Central  Google Scholar 

  178. Liu Y, Mei L, Yu Q, Xu C, Qiu Y, Yang Y, Shi K, Zhang Q, Gao H, Zhang Z (2015) Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl Mater Interfaces 7(30):16792–16801

    Article  CAS  PubMed  Google Scholar 

  179. Zhao L, Marshall ES, Kelland LR, Baguley BC (2007) Evidence for the involvement of p38 MAP kinase in the action of the vascular disrupting agent 5, 6-dimethylxanthenone-4-acetic acid (DMXAA). Investig N Drugs 25(3):271–276

    Article  CAS  Google Scholar 

  180. Zang M, Hu L, Zhang B, Zhu Z, Li J, Zhu Z, Yan M, Liu B (2017) Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer. Biochem Biophys Res Commun 490(3):913–919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work financially supported by the Cell and Regenerative Medicine Institute (SCARM) and Research Vice-Chancellor of Tabriz University of Medical Sciences (Ph.D. Thesis No. 59577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nouri.

Ethics declarations

Conflict of interest

All authors declare that they has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No need for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi Maroufi, N., Taefehshokr, S., Rashidi, MR. et al. Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep 47, 4749–4765 (2020). https://doi.org/10.1007/s11033-020-05515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05515-2

Keywords

Navigation