Skip to main content

Advertisement

Log in

Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. Hypoxia plays a pivotal role in the formation of VM. Hypoxia-induced Bcl-2 overexpression is observed in many types of tumors including melanoma, in which it is associated with tumorigenicity and angiogenesis. VE-cadherin, the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation, is also overexpressed in melanoma. Despite these connections, whether hypoxia induces VM formation via VE-cadherin regulation by Bcl-2 is not confirmed. We used human melanoma cells to upregulate or knockdown the expression of Bcl-2 to investigate the possible molecular mechanism of VM formation under hypoxia. Bcl-2 overexpression increased VE-cadherin expression and VM formation under normoxia, whereas Bcl-2 siRNA significantly decreased VE-cadherin expression and VM formation under hypoxia. We then demonstrated that Bcl-2 regulated VE-cadherin transcription activity by Western blot, three-dimensional cultures, reporter gene assay, and clinical analysis. Therefore, Bcl-2-dependent VE-cadherin overexpression may be an important mechanism by which hypoxia induces VM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307.

    Article  PubMed  CAS  Google Scholar 

  2. Park SY, Billiar TR, Seol DW. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Biochem Biophys Res Commun. 2002;291:150–3.

    Article  PubMed  CAS  Google Scholar 

  3. Dong Z, Wang J. Hypoxia selection of death-resistant cells. A role for Bcl-X(L). J Biol Chem. 2004;279:9215–21.

    Article  PubMed  CAS  Google Scholar 

  4. Dong Z, Venkatachalam MA, Wang J, Patel Y, Saikumar P, Semenza GL, Force T, Nishiyama J. Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent mechanisms. J Biol Chem. 2001;276:18702–9.

    Article  PubMed  CAS  Google Scholar 

  5. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  PubMed  CAS  Google Scholar 

  6. Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett. 2007;249:188–97.

    Article  PubMed  CAS  Google Scholar 

  7. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.

    Article  PubMed  CAS  Google Scholar 

  8. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27:6398–406.

    Article  PubMed  CAS  Google Scholar 

  9. Del Bufalo D, Biroccio A, Leonetti C, Zupi G. Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. FASEB J. 1997;11:947–53.

    PubMed  Google Scholar 

  10. Trisciuoglio D, Desideri M, Ciuffreda L, Mottolese M, Ribatti D, Vacca A, Del Rosso M, Marcocci L, Zupi G, Del Bufalo D. Bcl-2 overexpression in melanoma cells increases tumor progression-associated properties and in vivo tumor growth. J Cell Physiol. 2005;205:414–21.

    Article  PubMed  CAS  Google Scholar 

  11. Biroccio A, Candiloro A, Mottolese M, Sapora O, Albini A, Zupi G, Del Bufalo D. Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line. FASEB J. 2000;14:652–60.

    PubMed  CAS  Google Scholar 

  12. Ma C, Zhang J, Durrin LK, Lv J, Zhu D, Han X, Sun Y. The BCL2 major breakpoint region (mbr) regulates gene expression. Oncogene. 2007;26:2649–57.

    Article  PubMed  CAS  Google Scholar 

  13. Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111:3322–30.

    Article  PubMed  CAS  Google Scholar 

  14. Rieger L, Weller M, Bornemann A, Schabet M, Dichgans J, Meyermann R. BCL-2 family protein expression in human malignant glioma: a clinical-pathological correlative study. J Neurol Sci. 1998;155:68–75.

    Article  PubMed  CAS  Google Scholar 

  15. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.

    Article  PubMed  CAS  Google Scholar 

  16. Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, Yao Z, Ma YM, Gu Q, Zong WK, Liu ZY. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology. 2011;54:1690–706.

    Google Scholar 

  17. Cai XS, Jia YW, Mei J, Tang RY. Tumor blood vessels formation in osteosarcoma: vasculogenesis mimicry. Chin Med J (Engl). 2004;117:94–8.

    Google Scholar 

  18. Rahman MA, Dhar DK, Yamaguchi E, Maruyama S, Sato T, Hayashi H, Ono T, Yamanoi A, Kohno H, Nagasue N. Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin Cancer Res. 2001;7:1325–32.

    PubMed  CAS  Google Scholar 

  19. Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001;81:439–52.

    Article  PubMed  CAS  Google Scholar 

  20. Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008;28:223–32.

    Article  PubMed  CAS  Google Scholar 

  21. Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA. 2001;98:8018–23.

    Article  PubMed  CAS  Google Scholar 

  22. Mourad-Zeidan AA, Melnikova VO, Wang H, Raz A, Bar-Eli M. Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol. 2008;173:1839–52.

    Article  PubMed  CAS  Google Scholar 

  23. Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol. 2000;156:361–81.

    Article  PubMed  CAS  Google Scholar 

  24. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3:411–21.

    Article  PubMed  CAS  Google Scholar 

  25. Folberg R, Maniotis AJ. Vasculogenic mimicry. APMIS. 2004;112:508–25.

    Article  PubMed  Google Scholar 

  26. Bissell MJ. Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name? Am J Pathol. 1999;155:675–9.

    Article  PubMed  CAS  Google Scholar 

  27. Zhao XL, Du J, Zhang SW, Liu YX, Wang X, Sun BC. A study on vasculogenic mimicry in hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2006;14:41–4.

    PubMed  Google Scholar 

  28. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51:545–56.

    Article  PubMed  CAS  Google Scholar 

  29. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–39.

    Article  PubMed  CAS  Google Scholar 

  30. Wu S, Cheng Z, Yu L, Song W, Tao Y. Expression of CD82/KAI1 and HIF-1alpha in non-small cell lung cancer and their relationship to vasculogenic mimicry. Zhongguo Fei Ai Za Zhi. 2011;14:918–25.

    PubMed  Google Scholar 

  31. Luo Y, He DL, Jiang YG, Li MC, Ning L, Shen SL. Over-expression of HIF-1 alpha induces EMT of human prostate cancer cells. Zhonghua Nan Ke Xue. 2008;14:800–4.

    PubMed  CAS  Google Scholar 

  32. Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 2011;11:714–23.

    Article  PubMed  CAS  Google Scholar 

  33. Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, Gouvin LM, Sharma VM, Mercurio AM. ERbeta impedes prostate cancer EMT by destabilizing HIF-1 alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell. 2010;17:319–32.

    Article  PubMed  CAS  Google Scholar 

  34. Hellwig-Burgel T, Stiehl DP, Katschinski DM, Marxsen J, Kreft B, Jelkmann W. VEGF production by primary human renal proximal tubular cells: requirement of HIF-1, PI3-kinase and MAPKK-1 signaling. Cell Physiol Biochem. 2005;15:99–108.

    Article  PubMed  Google Scholar 

  35. Tang K, Breen EC, Wagner H, Brutsaert TD, Gassmann M, Wagner PD. HIF and VEGF relationships in response to hypoxia and sciatic nerve stimulation in rat gastrocnemius. Respir Physiol Neurobiol. 2004;144:71–80.

    Article  PubMed  CAS  Google Scholar 

  36. Shemirani B, Crowe DL. Hypoxic induction of HIF-1alpha and VEGF expression in head and neck squamous cell carcinoma lines is mediated by stress activated protein kinases. Oral Oncol. 2002;38:251–7.

    Article  PubMed  CAS  Google Scholar 

  37. Warner TD, Mitchell JA. HIF, stretching to get control of VEGF. Clin Sci (Lond). 2003;105:393–4.

    Article  CAS  Google Scholar 

  38. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA. 1994;91:6569–73.

    Article  PubMed  CAS  Google Scholar 

  39. Zhong F, Davis MC, McColl KS, Distelhorst CW. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol. 2006;172:127–37.

    Article  PubMed  CAS  Google Scholar 

  40. Zuo J, Ishikawa T, Boutros S, Xiao Z, Humtsoe JO, Kramer RH. Bcl-2 overexpression induces a partial epithelial to mesenchymal transition and promotes squamous carcinoma cell invasion and metastasis. Mol Cancer Res. 2010;8:170–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Key Project of National Nature Science Foundation of China (No. 30830049), Project of National Nature Science Foundation of China (No. 81173091 and No. 81172046), the cooperation of China–Sweden (No. 09ZCZD SF04400), the Research Fund for the Doctoral Program of High Education (No. 20111202110010), the ‘‘211 Project’’ Graduate Innovation Grant of Tianjin Medical University (No. 146-200002), Key project of the Tianjin Natural Science Foundation (No. 12JCZDJC23600) and the Natural Science Foundation of Tianjin Education Commission (No. 20100104).

Conflict of interest

All authors have read and approved the article before submission to your journal. There is no conflict of interest of any authors in relation to the submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-cun Sun.

Additional information

Nan Zhao, Bao-cun Sun, and Tao Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, N., Sun, Bc., Sun, T. et al. Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Med Oncol 29, 3599–3607 (2012). https://doi.org/10.1007/s12032-012-0245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-012-0245-5

Keywords

Navigation