Skip to main content

Advertisement

Log in

Inhibition of TGF-β signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

TGF-β is a multifunctional cytokine that regulates cell proliferation, differentiation, apoptosis and extracellular matrix production. Deregulation of TGF-β production or signaling has been associated with a variety of pathological processes such as cancer, metastasis, angiogenesis and fibrosis. Therefore, TGF-β signaling has emerged as an attractive target for the development of new cancer therapeutics. In a screening program of natural compounds from fungi inhibiting the TGF-β dependent expression of a reporter gene in HepG2 cells, we found that the flavone isoxanthohumol inhibited the binding of the activated Smad2/3 transcription factors to the DNA and antagonized the cellular effects of TGF-β including reporter gene activation and expression of TGF-β induced genes in HepG2 and MDA-MB-231 cells. In an in vitro angiogenesis assay, isoxanthohumol (56 μM) strongly decreased the formation of capillary-like tubules of MDA-MB-231 cells on Matrigel. In addition, we found that isoxanthohumol blocked IFN-γ, IL-4 and IL-6 dependent Jak/Stat signaling and strongly inhibited the induction of pro-inflammatory genes in MonoMac6 cells at the transcriptional level after LPS/TPA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    Article  PubMed  CAS  Google Scholar 

  2. Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–149

    Article  PubMed  CAS  Google Scholar 

  3. Massague J, Seoane J, Wotton D (2006) Smad transcription factors. Genes Dev 19:2783–2810

    Article  Google Scholar 

  4. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-β super family signaling pathways in human disease. Biochim Biophys Acta 1782:197–228

    PubMed  CAS  Google Scholar 

  5. Feng X-H, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  PubMed  CAS  Google Scholar 

  6. Moustakas A, Heldin CH (2005) Non-Smad TGF-β signals. J Cell Sci 118:3573–3584

    Article  PubMed  CAS  Google Scholar 

  7. Pardali K, Moustakas A (2007) Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62

    PubMed  CAS  Google Scholar 

  8. Bierie B, Moses HL (2006) TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    Article  PubMed  CAS  Google Scholar 

  9. Leivonen S-K, Kähäri V-M (2007) Transforming growth factor-β signaling in cancer invasion and metastasis. Int J Cancer 121:2119–2124

    Article  PubMed  CAS  Google Scholar 

  10. Bertolino P, Deckers M, Lebrin F, ten Dijke P (2005) Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. Chest 128:585S–590S

    Article  PubMed  CAS  Google Scholar 

  11. Wahl SM, Wen J, Moutsopoulos N (2006) TGF-β: a mobile purveyor of immune privilege. Immunol Rev 213:213–227

    Article  PubMed  CAS  Google Scholar 

  12. Yingling JM, Blanchard KL, Sawyer S (2004) Development of TGF-β signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    Article  PubMed  CAS  Google Scholar 

  13. Iyer S, Wang Z-G, Akhtari M, Zhao W, Seth P (2005) Targeting TGFβ signaling for cancer therapy. Cancer Biol Ther 4:261–266

    Article  PubMed  CAS  Google Scholar 

  14. Pinkas J, Teicher BA (2006) TGF-β in cancer and as therapeutic target. Biochem Pharmacol 72:523–529

    Article  PubMed  CAS  Google Scholar 

  15. Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 57:259–265

    Article  PubMed  CAS  Google Scholar 

  16. Gerhäuser C (2005) Beer constituents as potential cancer chemo preventive agents. Eur J Cancer 41:1941–1954

    Article  PubMed  Google Scholar 

  17. Juvvadi PR, Seshime Y, Kitamoto K (2005) Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J Microbiol 43:475–486

    PubMed  CAS  Google Scholar 

  18. White TJ, Bruns T, Lee S, Taylor AW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc, San Diego, pp 315–322

    Google Scholar 

  19. Stevens JF, Taylor AW, Deinzer ML (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography—tandem mass spectrometry. J Chromatogr A 832:97–107

    Article  PubMed  CAS  Google Scholar 

  20. Roehm NW, Rodgers H, Hatfield SM, Glasebrook AL (1991) An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Meth 142:257–265

    Article  CAS  Google Scholar 

  21. Erkel G, Belahmer H, Serwe A, Anke T, Kunz H, Kolshorn H, Liermann J, Opatz T (2008) Oxacyclododecindione, a novel inhibitor of IL-4 signaling from Exserohilum rostratum. J Antibiot (Tokyo) 61:285–290

    Article  CAS  Google Scholar 

  22. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100

    Article  PubMed  CAS  Google Scholar 

  23. Mikita T, Campbell D, Wu P, Williamson K, Schindler U (1996) Requirements for interleukin-4-induced gene expression and functional characterization of STAT6. Mol Cell Biol 16:5811–5820

    PubMed  CAS  Google Scholar 

  24. Weidler M, Rether J, Anke T, Erkel G (2000) Inhibition of interleukin-6 signaling by galiellalactone. FEBS Lett 484:1–6

    Article  PubMed  CAS  Google Scholar 

  25. Rether J, Erkel G, Anke T, Sterner O (2004) Inhibition of inducible TNF-α expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale. Biol Chem 385:829–834

    Article  PubMed  CAS  Google Scholar 

  26. Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D (2005) Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 289:85–95

    Article  Google Scholar 

  27. Ray S, Sherman CT, Lu M, Brasier AR (2002) Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acyltransferase activity. Mol Endocrinol 16:824–836

    Article  PubMed  CAS  Google Scholar 

  28. Pahl HL, Baeuerle PA (1995) A novel signal transduction pathway from the endoplasmatic reticulum to the nucleus is mediated by transcription factor NF-κB. EMBO J 14:2580–2588

    PubMed  CAS  Google Scholar 

  29. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62:3729–3735

    PubMed  CAS  Google Scholar 

  30. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  31. Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  PubMed  CAS  Google Scholar 

  32. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Article  PubMed  CAS  Google Scholar 

  33. Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26:341–352

    Article  PubMed  CAS  Google Scholar 

  34. Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TßRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685

    Article  PubMed  CAS  Google Scholar 

  35. Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272:28107–28115

    Article  PubMed  CAS  Google Scholar 

  36. Liu X, Sun Y, Constantinescu SN, Karam E, Weinberg RA, Lodish HF (1997) Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci USA 94:10669–10674

    Article  PubMed  CAS  Google Scholar 

  37. Chen CR, Kang Y, Massague J (2001) Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc Natl Acad Sci USA 98:992–999

    Article  PubMed  CAS  Google Scholar 

  38. Deng J, Grande F, Neamati N (2007) Small molecule inhibitors of Stat3 signaling pathway. Curr Cancer Drug Targets 7:91–107

    Article  PubMed  CAS  Google Scholar 

  39. Klampfer L (2006) Signal transducers and activators of transcription (STATs): novel targets of chemo preventive and chemotherapeutic drugs. Curr Cancer Drug Targets 6:107–121

    Article  PubMed  CAS  Google Scholar 

  40. Janknecht R, Wells NJ, Hunter T (1998) TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev 12:2114–2119

    Article  PubMed  CAS  Google Scholar 

  41. Simonsson M, Kanduri M, Grönroos E, Heldin C-H, Ericsson J (2006) The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 281:39870–39880

    Article  PubMed  CAS  Google Scholar 

  42. Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A (2006) Signaling mechanisms, interaction partners, and target genes of Stat6. Cytokine Growth Factor Rev 17:173–188

    Article  PubMed  CAS  Google Scholar 

  43. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  44. Gaestel M, Kotlyarov A, Kracht M (2009) Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov 8:480–499

    Article  PubMed  CAS  Google Scholar 

  45. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-β and the immune response: Implications for anticancer therapy. Clin Cancer Res 13:5262–5270

    Article  PubMed  CAS  Google Scholar 

  46. von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Boettinger EP (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor β. J Biol Chem 275:11320–11326

    Article  Google Scholar 

  47. Javelaud D, Mauviel A (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene 24:5742–5750

    Article  PubMed  CAS  Google Scholar 

  48. Zhang S, Zhang D, Sun B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254:157–164

    Article  PubMed  CAS  Google Scholar 

  49. Paulis YWJ, Soetekouw PMMB, Verheul HMW, Tjan-Heijnen VCG, Griffioen AW (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta 1806:18–28

    PubMed  CAS  Google Scholar 

  50. Reich NC, Liu L (2006) Tracking Stat nuclear traffic. Nat Rev Immunol 6:602–612

    Article  PubMed  CAS  Google Scholar 

  51. Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637

    Article  PubMed  CAS  Google Scholar 

  52. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki K, Hayashi H (2007) Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26:500–508

    Article  PubMed  CAS  Google Scholar 

  53. Shankaranarayanan P, Chaitidis P, Kühn H, Nigam S (2001) Acetylation by histone acetyltransferase CREB-binding protein/p300 of Stat6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J Biol Chem 276:42753–42760

    Article  PubMed  CAS  Google Scholar 

  54. Yu H, Jove R (2004) The Stats of cancer-new molecular targets come of age. Nat Rev Cancer 4:97–105

    Article  PubMed  CAS  Google Scholar 

  55. Devarajan E, Huang S (2009) STAT3 as a central regulator of tumor metastases. Curr Mol Med 9:626–633

    Article  PubMed  CAS  Google Scholar 

  56. Chen Z, Han ZC (2008) Stat3: a critical transcription activator in angiogenesis. Med Res Rev 28:185–200

    Article  PubMed  CAS  Google Scholar 

  57. Berg T (2008) Signal transducers and activators of transcription as targets for small organic molecules. Chembiochem 9:2039–2044

    Article  PubMed  CAS  Google Scholar 

  58. Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest 117:1175–1183

    Article  PubMed  CAS  Google Scholar 

  59. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    Article  PubMed  CAS  Google Scholar 

  60. Nakanishi C, Toi M (2005) Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309

    Article  PubMed  CAS  Google Scholar 

  61. Gerhauser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, Neumann I, Scherf H-R, Frank N, Bartsch H, Becker H (2002) Cancer chemo preventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther 1:959–969

    PubMed  CAS  Google Scholar 

  62. Albini A, Dell’Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, Fassina G (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20:527–529

    PubMed  CAS  Google Scholar 

  63. Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, Aggarwal BB (2009) Modification of the cysteine residues in IκBα kinase and NF-κB (p65) by xanthohumol leads to suppression of NF-κB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 113:2003–2013

    Article  PubMed  CAS  Google Scholar 

  64. Vanhoecke B, Derycke L, Van Marck V, Depypere H, De Keukeleire D, Bracke M (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int J Cancer 117:889–895

    Article  PubMed  CAS  Google Scholar 

  65. Monteiro R, Calhau C, e Silva AO, Pinheiro-Silva S, Guerreiro S, Gärtner F, Azevedo I, Soares R (2008) Xanthohumol Inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem 04:1699–1707

    Article  Google Scholar 

  66. Cho Y-C, Kim HJ, Kim Y-J, Lee KY, Choi HJ, Lee I-S, Kang BY (2008) Differential anti-inflammatory pathway by xanthohumol in IFN-γ and LPS-activated macrophages. Int Immunopharmacol 8:567–573

    Article  PubMed  CAS  Google Scholar 

  67. Bertl E, Becker H, Eicher T, Herhaus C, Kapadia G, Bartsch H, Gerhäuser C (2004) Inhibition of endothelial cell functions by novel potential cancer chemo preventive agents. Biochem Biophys Res Commun 325:287–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Stiftung Rheinland-Pfalz für Innovation. We are very thankful to Prof. H. Anke for providing the crude extracts for the screening as well as Trichoderma harzianum IBWF278b-95. We thank Prof. S. Dooley, Medical Faculty of Mannheim, for providing the (AGCCAGACA)9MLP-Luc reporter plasmid, Prof. B. Brüne, University of Frankfurt, for providing the HepG2-pH3SVL cells, and Prof. O. Sterner, University of Lund, for the structure elucidation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Erkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serwe, A., Rudolph, K., Anke, T. et al. Inhibition of TGF-β signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest New Drugs 30, 898–915 (2012). https://doi.org/10.1007/s10637-011-9643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9643-3

Keywords

Navigation