Skip to main content
Log in

Transgenic tetraploid Isatis indigotica expressing Bt Cry1Ac and Pinellia ternata agglutinin showed enhanced resistance to moths and aphids

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Co-expression of multiple genes encoding different kinds of insect resistant proteins has been developed to confer a broader spectrum of pest control. Tetraploid Isatis indigotica Fort was transformed with a plasmid, p3300BP, containing Bacillus thuringiensis Cry1Ac gene (Bt) and Pinellia ternata agglutinin gene (Pta) and the selectable marker herbicide resistance gene (Bar) driven by the CaMV35S promoter via Agrobacterium tumefaciens-mediated transformation. The integration and expression of introduced genes in regenerated transgenic plants were confirmed by PCR and Western blot assays. Insect bioassay test demonstrated transgenic lines had significant inhibition to diamondback moths (Plutella xylostella L.) and peach potato aphids (Myzus persicae Sulzer) simultaneously. Our study reported here would be a great motivation for field culture of tetraploid I. indigotica, also providing an efficient molecular breeding strategy to provide insect tolerant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu XY, Liu YH, Sheng WY et al (1997) Chemical constituents of Isatis indigotica. Planta Med 63:55–57

    Article  PubMed  CAS  Google Scholar 

  2. Chen M, Chen XF, Gu ZL (2002) Progress in pharmacological effects and clinical application of Isatis indigotica Fort. Chin Wild Plant Res 2:3–6

    Google Scholar 

  3. Qiao CZ, Wu MS, Dai FB et al (1989) Studies on polyploid breeding of Isatis indigotica Fort. Acta Bot Sin 31:678–683

    Google Scholar 

  4. Tang JD, Shelton AM, Rie J et al (1996) Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl Environ Microbiol 62:564–569

    PubMed  CAS  Google Scholar 

  5. Margaritopoulos JT, Kasprowicz L, Malloch GL et al (2009) Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol 9:13

    Article  PubMed  Google Scholar 

  6. Ferry N, Edwards MG, Gatehouse J et al (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19

    Article  PubMed  CAS  Google Scholar 

  7. Jabeen R, Khan MS, Zafar Y et al (2010) Codon optimization of cry1Ab gene for hyper expression in plant organelles. Mol Biol Rep 37:1011–1017

    Article  PubMed  CAS  Google Scholar 

  8. Kumar S, Chandra A, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29:641–653

    PubMed  CAS  Google Scholar 

  9. Bukhari DA, Shakoori AR (2009) Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli. Mol Biol Rep 36:1661–1670

    Article  PubMed  CAS  Google Scholar 

  10. Deka S, Barthakur S (2010) Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv 28:70–81

    Article  PubMed  CAS  Google Scholar 

  11. Yao JH, Zhao XY, Liao ZH et al (2003) Cloning and molecular characterization of a novel lectin gene from Pinellia ternate. Cell Res 13:301–308

    Article  PubMed  CAS  Google Scholar 

  12. Yao JH, Pang YZ, Qi HX et al (2003) Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids. Transgenic Res 12:715–722

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook J, Russell D, Maniatis T (2002) Molecular cloning a laboratory manual. Cold Springer Harbor Laboratory Press, Cold Springer Harbor

    Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  15. Sadeghi A, Smagghe G, Broeders S et al (2008) Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leaf worm (Spodoptera littoralis). Transgenic Res 17:9–18

    Article  PubMed  CAS  Google Scholar 

  16. Hilder VA, Powell KS, Gatehouse AMR et al (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25

    Article  CAS  Google Scholar 

  17. James C (2002) Global status of commercialisation of transgenic crops: 2002. ISAAA briefs No. 27, Ithaca, NY. http://www.isaaa.org

  18. Ralph B (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  Google Scholar 

  19. Hu Q, Tao SS (2005) The latest progress of study and development on Pinellia ternata. J Southwest Univ Sci Technol 20:63–68

    Google Scholar 

  20. Bano-Maqbool S, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480

    Article  Google Scholar 

  21. Tang K, Sun X, Wu A et al (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. Oryzae. Plant Sci 160:1031–1038

    Article  Google Scholar 

  22. Cao J, Anthony MS, Elizabeth DE (2008) Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Rep 27:479–487

    Article  PubMed  CAS  Google Scholar 

  23. Jung SC, Kim YG (2007) Potentiating effect of Bacillus thuringiensis spp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 100:246–250

    Article  PubMed  Google Scholar 

  24. Rang C, Lacey LA, Frutos R (2000) The crystal proteins from Bacillus thuringiensis spp. thompsoni display a synergistic activity against the codling moth, Cydia pomonella. Curr Microbiol 40:200–204

    Article  PubMed  CAS  Google Scholar 

  25. Li M, Wu G, Liu C et al (2009) Expression and activity of a probable toxin from Photorhabdus luminescens. Mol Biol Rep 36:785–790

    Article  PubMed  CAS  Google Scholar 

  26. Roh JY, Choi JY, Li MS et al (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (30900786); Modernization of Traditional Chinese Medicine Foundation (08DZ1971502) and Domestic Science and Technology Cooperation Projects (10495801400, 10395820200), Shanghai Science and Technology Committee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Wansheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Wang, K., Ding, R. et al. Transgenic tetraploid Isatis indigotica expressing Bt Cry1Ac and Pinellia ternata agglutinin showed enhanced resistance to moths and aphids. Mol Biol Rep 39, 485–491 (2012). https://doi.org/10.1007/s11033-011-0762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0762-x

Keywords

Navigation