Skip to main content
Log in

The role of long noncoding ribonucleic acids in the central nervous system injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) injury involves complex pathophysiological molecular mechanisms. Long noncoding ribonucleic acids (lncRNAs) are an important form of RNA that do not encode proteins but take part in the regulation of gene expression and various biological processes. Multitudinous studies have evidenced lncRNAs to have a significant role in the process of progression and recovery of various CNS injuries. Herein, we review the latest findings pertaining to the role of lncRNAs in CNS, both normal and diseased state. We aim to present a comprehensive clinical application prospect of lncRNAs in CNS, and thus, discuss potential strategies of lncRNAs in treating CNS injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

I confirm that I have included a citation for available data in my reference section.

Abbreviations

CNS:

Central nervous system;

lncRNAs:

Long noncoding ribonucleic acids;

TNF-a:

Factors like tumor necrosis factor-a;

ROS:

Reactive oxygen species;

ncRNAs:

Non-coding RNAs;

mRNAs:

Messenger RNAs;

miRNAs:

MicroRNAs;

NGS:

Next-generation sequencing;

TFs:

Transcription factors;

ceRNAs:

Competing endogenous RNAs;

TUG1:

Taurine-upregulated gene 1;

MAPK:

Mitogen-activated protein kinase;

NF-kB:

Nuclear factor kappa-light chain-enhancer of activated B;

FOXO3:

Forkhead box O3;

ROCK1:

Rho-associated coiled-coil-containing protein kinase 1;

SAH:

Subarachnoid hemorrhage;

DC:

Dendritic cells;

NFAT5:

Nuclear factor of activated T cells 5;

NEAT1:

Nuclear enriched abundant transcript 1;

IFG1R:

Insulin-like growth factor 1 receptor;

BDNF-AS:

Brain-derived neurotrophic factor antisense;

P53:

Protein 53;

IL-1β:

Interleukin-1β;

IL-6:

Interleukin-6;

Bax:

BCL-2-associated X protein;

Caspase 3:

Cysteinyl aspartate-specific proteinase-3;

Bcl-2:

B-cell lymphoma-2;

PPARγ:

Peroxisome proliferator-activated receptor γ;

HMGB1:

High mobility group protein B1;

RBFOX2:

RNA binding fox-1 homolog 2

References

  1. Brazinova A, Rehorcikova V, Taylor MS, Buckova V, Majdan M, Psota M, Peeters W, Feigin V, Theadom A, Holkovic L, Synnot A (2021) Epidemiology of traumatic brain injury in Europe: a living systematic review. J Neurotrauma 38(10):1411–1440. https://doi.org/10.1089/neu.2015.4126

    Article  PubMed  PubMed Central  Google Scholar 

  2. Taylor MJ, Thompson AM, Alhajlah S, Tuxworth RI, Ahmed Z (2022) Inhibition of Chk2 promotes neuroprotection, axon regeneration, and functional recovery after CNS injury. Sci Adv 8(37):eabq2611. https://doi.org/10.1126/sciadv.abq2611

    Article  Google Scholar 

  3. Fujikawa DG (2023) Programmed mechanisms of status epilepticus-induced neuronal necrosis. Epilepsia Open 8 Suppl 1(Suppl 1):S25-S34.  https://doi.org/10.1002/epi4.12593

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen T, Yang LK, Ai P, Zhu J, Hang CH, Wang YH (2022) Edonerpic maleate regulates glutamate receptors through CRMP2- and Arc-mediated mechanisms in response to brain trauma. Cell Death Discov 8(1):95. https://doi.org/10.1038/s41420-022-00901-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, Rose-John S, Ruitenberg MJ, Vukovic J (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180(5):833-846.e16. https://doi.org/10.1016/j.cell.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Tian M, Tan J, Pei X, Lu C, Xin Y, Deng S, Zhao F, Gao Y, Gong Y (2022) Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J Neuroinflammation 19(1):82. https://doi.org/10.1186/s12974-022-02438-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7(10):a020545. https://doi.org/10.1101/cshperspect.a020545

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ritzel RM, Wu J (2023) Functional phenotyping of microglia highlights the dark relationship between chronic traumatic brain injury and normal age-related pathology. Neural Regen Res 18(4):811–813. https://doi.org/10.4103/1673-5374.353487

    Article  PubMed  Google Scholar 

  9. Li JA, Shi MP, Cong L, Gu MY, Chen YH, Wang SY, Li ZH, Zan CF, Wei WF (2023) Circulating exosomal lncRNA contributes to the pathogenesis of spinal cord injury in rats. Neural Regen Res 18(4):889–894. https://doi.org/10.4103/1673-5374.353504

    Article  PubMed  Google Scholar 

  10. Li G, Ma X, Zhao H, Fan J, Liu T, Luo Y, Guo Y (2022) Long non-coding RNA H19 promotes leukocyte inflammation in ischemic stroke by targeting the miR-29b/C1QTNF6 axis. CNS Neurosci Ther 28(6):953–963. https://doi.org/10.1111/cns.13829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, Li Z, Mao L, Wang H (2022) Circular RNA in acute central nervous system injuries: a new target for therapeutic intervention. Front Mol Neurosci 15:816182. https://doi.org/10.3389/fnmol.2022.816182

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Li D, Zhang J, Yan P, Liu X, Wang L, Khan A, Liu Z, Mu J, Xu J, Niu B, Xie J (2020) Excessive apoptosis and ROS induced by ethionine affect neural cell viability and differentiation. Acta Biochim Biophys Sin (Shanghai) 52(10):1156–1165. https://doi.org/10.1093/abbs/gmaa093

    Article  CAS  PubMed  Google Scholar 

  13. He L, Zhang F, Zhu Y, Lu M (2022) A crosstalk between circular RNA, microRNA, and messenger RNA in the development of various brain cognitive disorders. Front Mol Neurosci 15:960657. https://doi.org/10.3389/fnmol.2022.960657

    Article  PubMed  PubMed Central  Google Scholar 

  14. Puttagunta R, Tedeschi A, Sória MG, Hervera A, Lindner R, Rathore KI, Gaub P, Joshi Y, Nguyen T, Schmandke A, Laskowski CJ, Boutillier AL, Bradke F, Di Giovanni S (2014) PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 5:3527. https://doi.org/10.1038/ncomms4527

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Buller BA, Zhang ZG, Zhang Y, Lu M, Rosene DL, Medalla M, Moore TL, Chopp M (2022) Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 347:113895. https://doi.org/10.1016/j.expneurol.2021.113895

    Article  PubMed  PubMed Central  Google Scholar 

  16. Enam SF, Kader SR, Bodkin N, Lyon JG, Calhoun M, Azrak C, Tiwari PM, Vanover D, Wang H, Santangelo PJ, Bellamkonda RV (2020) Evaluation of M2-like macrophage enrichment after diffuse traumatic brain injury through transient interleukin-4 expression from engineered mesenchymal stromal cells. J Neuroinflammation 17(1):197. https://doi.org/10.1186/s12974-020-01860-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao X, You Z, Li Y, Kang X, Yang W, Wang H, Zhang T, Zhao X, Sun Y, Shen H, Dai J (2023) Multifunctional hydrogel modulates the immune microenvironment to improve allogeneic spinal cord tissue survival for complete spinal cord injury repair. Acta Biomater 155:235–246. https://doi.org/10.1016/j.actbio.2022.11.015

    Article  CAS  PubMed  Google Scholar 

  18. Iverson GL, Minkkinen M, Karr JE, Berghem K, Zetterberg H, Blennow K, Posti JP, Luoto TM (2022) Examining four blood biomarkers for the detection of acute intracranial abnormalities following mild traumatic brain injury in older adults. Front Neurol 13:960741. https://doi.org/10.3389/fneur.2022.960741

    Article  PubMed  PubMed Central  Google Scholar 

  19. An NA, Zhang J, Mo F, Luan X, Tian L, Shen QS, Li X, Li C, Zhou F, Zhang B, Ji M, Qi J, Zhou WZ, Ding W, Chen JY, Yu J, Zhang L, Shu S, Hu B, Li CY (2023) De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat Ecol Evol 7(2):264–278. https://doi.org/10.1038/s41559-022-01925-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ren Z, Chu C, Pang Y, Cai H, Jia L (2023) A group of long non-coding RNAs in blood acts as a specific biomarker of Alzheimer’s disease. Mol Neurobiol 60(2):566–575. https://doi.org/10.1007/s12035-022-03105-w

    Article  CAS  PubMed  Google Scholar 

  21. Huang T, Zhao JY, Pan RR, Jiang T, Fu XX, Huang Q, Wang XX, Gong PY, Tian YY, Zhang YD (2023) Dysregulation of circulatory levels of lncRNAs in Parkinson’s disease. Mol Neurobiol 60(1):317–328. https://doi.org/10.1007/s12035-022-03086-w

    Article  CAS  PubMed  Google Scholar 

  22. Kirchner A, Dachet F, Lipovich L, Loeb JA (2023) Activity-dependent non-coding RNA MAPK interactome of the human epileptic brain. Noncoding RNA 9(1):3. https://doi.org/10.3390/ncrna9010003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao J, Tang T, Tan J, Chen Q, Yuan J, Li T, Cheng X (2023) Expression profiles of long noncoding RNAs and messenger RNAs in a rat model of spinal cord injury. Comput Math Methods Med 2023:6033020. https://doi.org/10.1155/2023/6033020

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wufuer A, Luohemanjiang X, Du L, Lei J, Shabier M, Han DF, Ma J (2023) ANRIL overexpression globally induces expression and alternative splicing of genes involved in inflammation in HUVECs. Mol Med Rep 27(2):27. https://doi.org/10.3892/mmr.2022.12915

    Article  CAS  PubMed  Google Scholar 

  25. Vierbuchen T, Agarwal S, Johnson JL, Galia L, Lei X, Stein K, Olagnier D, Gaede KI, Herzmann C, Holm CK, Heine H, Pai A, O’Hara Hall A, Hoebe K, Fitzgerald KA (2023) The lncRNA LUCAT1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proc Natl Acad Sci U S A 120(1):e2213715120. https://doi.org/10.1073/pnas.2213715120

    Article  CAS  PubMed  Google Scholar 

  26. Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J (2022) A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 13:930171. https://doi.org/10.3389/fimmu.2022.930171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li M, Zhao LM, Li SL, Li J, Gao B, Wang FF, Wang SP, Hu XH, Cao J, Wang GY (2018) Differentially expressed lncRNAs and mRNAs identified by NGS analysis in colorectal cancer patients. Cancer Med 7(9):4650–4664. https://doi.org/10.1002/cam4.1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harrison LJ, Bose D (2022) Enhancer RNAs step forward: new insights into enhancer function. Development 149(16):dev200398. https://doi.org/10.1242/dev.200398

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nair L, Chung H, Basu U (2020) Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 21(3):123–136. https://doi.org/10.1038/s41580-019-0209-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  PubMed  Google Scholar 

  31. Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220(2):e202009045. https://doi.org/10.1083/jcb.202009045

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhong J, Jiang L, Cheng C, Huang Z, Zhang H, Liu H, He J, Cao F, Peng J, Jiang Y, Sun X (2016) Altered expression of long non-coding RNA and mRNA in mouse cortex after traumatic brain injury. Brain Res 1646:589–600. https://doi.org/10.1016/j.brainres.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  33. Barangi S, Hayes AW, Karimi G (2023) The role of lncRNAs/miRNAs/Sirt1 axis in myocardial and cerebral injury. Cell Cycle 22(9):1062–1073. https://doi.org/10.1080/15384101.2023.2172265

    Article  CAS  PubMed  Google Scholar 

  34. Ma N, Tie C, Yu B, Zhang W, Wan J (2020) Identifying lncRNA-miRNA-mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging (Albany NY) 12(3):2897–2920. https://doi.org/10.18632/aging.102785

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Sun Y, Hu S, Lou C, Pan YB (2022) Construction of a lncRNA-associated competing endogenous RNA regulatory network after traumatic brain injury in mouse. Mol Brain 15(1):40. https://doi.org/10.1186/s13041-022-00925-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145(2):178–181. https://doi.org/10.1016/j.cell.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Zhou J (2017) LncRNAs: macromolecules with big roles in neurobiology and neurological diseases. Metab Brain Dis 32(2):281–291. https://doi.org/10.1007/s11011-017-9965-8

    Article  CAS  PubMed  Google Scholar 

  38. Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31(3):522–533. https://doi.org/10.1038/emboj.2011.459

    Article  CAS  PubMed  Google Scholar 

  39. Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C (2020) Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 26(6):688–700. https://doi.org/10.2174/1381612826666191227154009

    Article  CAS  PubMed  Google Scholar 

  40. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672. https://doi.org/10.1073/pnas.0904715106

    Article  PubMed  PubMed Central  Google Scholar 

  41. Du J, Li W, Wang B (2021) Long non-coding RNA TUG1 aggravates cerebral ischemia and reperfusion injury by sponging miR-493-3p/miR-410-3p. Open Med (Wars) 16(1):919–930. https://doi.org/10.1515/med-2021-0253

    Article  CAS  PubMed  Google Scholar 

  42. He Z, Zhao Y, Zhu Y, Wang W, Liu X, Lu F (2022) Interfering TUG1 attenuates cerebrovascular endothelial apoptosis and inflammatory injury after cerebral ischemia/reperfusion via TUG1/miR-410/FOXO3 ceRNA axis. Neurotox Res 40(1):1–13. https://doi.org/10.1007/s12640-021-00446-7

    Article  CAS  PubMed  Google Scholar 

  43. Zang Y, Zhou X, Wang Q, Li X, Huang H (2018) LncRNA FIRRE/NF-kB feedback loop contributes to OGD/R injury of cerebral microglial cells. Biochem Biophys Res Commun 501(1):131–138. https://doi.org/10.1016/j.bbrc.2018.04.194

    Article  CAS  PubMed  Google Scholar 

  44. Wang CF, Zhao CC, Weng WJ, Lei J, Lin Y, Mao Q, Gao GY, Feng JF, Jiang JY (2017) Alteration in long non-coding RNA expression after traumatic brain injury in rats. J Neurotrauma 34(13):2100–2108. https://doi.org/10.1089/neu.2016.4642

    Article  PubMed  Google Scholar 

  45. Zhang Y, Wang J, Zhang Y, Wei J, Wu R, Cai H (2019) Overexpression of long noncoding RNA Malat1 ameliorates traumatic brain injury induced brain edema by inhibiting AQP4 and the NF-κB/IL-6 pathway. J Cell Biochem 120(10):17584–17592. https://doi.org/10.1002/jcb.29025

    Article  CAS  PubMed  Google Scholar 

  46. Shi YL, Wang Q, Wei JC (2019) Influence of lncRNA-MALAT1 on neuronal apoptosis in rats with cerebral infarction through regulating the ERK/MAPK signaling pathway. Eur Rev Med Pharmacol Sci 23(18):8039–8048. https://doi.org/10.26355/eurrev_201909_19020

    Article  PubMed  Google Scholar 

  47. Li Z, Li J, Tang N (2017) Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 354:1–10. https://doi.org/10.1016/j.neuroscience.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Hu H, Wu Y, Zhao Y, Xie F, Sun Z, Wang X, Qian L (2023) Norepinephrine promotes neuronal apoptosis of hippocampal HT22 cells by up-regulating the expression of long non-coding RNA MALAT1. Stress 26(1):2252905. https://doi.org/10.1080/10253890.2023.2252905

    Article  CAS  PubMed  Google Scholar 

  49. Cao DW, Liu MM, Duan R, Tao YF, Zhou JS, Fang WR, Zhu JR, Niu L, Sun JG (2020) The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol Sin 41(1):22–33. https://doi.org/10.1038/s41401-019-0284-y

    Article  CAS  PubMed  Google Scholar 

  50. Tajiri N, Acosta SA, Shahaduzzaman M, Ishikawa H, Shinozuka K, Pabon M, Hernandez-Ontiveros D, Kim DW, Metcalf C, Staples M, Dailey T, Vasconcellos J, Franyuti G, Gould L, Patel N, Cooper D, Kaneko Y, Borlongan CV, Bickford PC (2014) Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 34(1):313–326. https://doi.org/10.1523/JNEUROSCI.2425-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhong Y, Yu C, Qin W (2019) LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p /ROCK1. Cancer Gene Ther 26(7–8):234–247. https://doi.org/10.1038/s41417-018-0067-5

    Article  CAS  PubMed  Google Scholar 

  52. Deng L, Jiang J, Chen S, Lin X, Zuo T, Hu Q, Wu Y, Fan X, Dong Z (2022) Long non-coding RNA ANRIL downregulation alleviates neuroinflammation in an ischemia stroke model via modulation of the miR-671-5p/NF-κB pathway. Neurochem Res 47(7):2002–2015. https://doi.org/10.1007/s11064-022-03585-1

    Article  CAS  PubMed  Google Scholar 

  53. Zhao JH, Wang B, Wang XH, Wang JR, Xu CW (2019) Influence of lncRNA ANRIL on neuronal apoptosis in rats with cerebral infarction by regulating the NF-κB signaling pathway. Eur Rev Med Pharmacol Sci 23(22):10092–10100. https://doi.org/10.26355/eurrev_201911_19577

    Article  PubMed  Google Scholar 

  54. Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao L, Ren J (2017) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 8(12):3211. https://doi.org/10.1038/s41419-017-0047-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liang Z, Chi YJ, Lin GQ, Xiao LF, Su GL, Yang LM (2018) LncRNA MEG3 participates in neuronal cell injury induced by subarachnoid hemorrhage via inhibiting the Pi3k/Akt pathway. Eur Rev Med Pharmacol Sci 22(9):2824–2831. https://doi.org/10.26355/eurrev_201805_14983

    Article  CAS  PubMed  Google Scholar 

  56. Liu J, Li Q, Zhang KS, Hu B, Niu X, Zhou SM, Li SG, Luo YP, Wang Y, Deng ZF (2017) Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling. Mol Neurobiol 54(10):8179–8190. https://doi.org/10.1007/s12035-016-0270-z

    Article  CAS  PubMed  Google Scholar 

  57. Liu X, Hou L, Huang W, Gao Y, Lv X, Tang J (2016) The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway. Front Cell Neurosci 10:201. https://doi.org/10.3389/fncel.2016.00201

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu WQ, Wang YJ, Zheng Y, Chen X (2019) Effects of long non-coding RNA NEAT1 on sepsis-induced brain injury in mice via NF-κB. Eur Rev Med Pharmacol Sci 23(9):3933–3939. https://doi.org/10.26355/eurrev_201905_17822

    Article  PubMed  Google Scholar 

  59. Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, Qin X, Zhong J, Li X, Li Y, Sun X, Chen L, Jiang Y (2017) High-throughput sequencing and co-expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci Rep 7:46577. https://doi.org/10.1038/srep46577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Francescatto M, Vitezic M, Heutink P, Saxena A (2014) Brain-specific noncoding RNAs are likely to originate in repeats and may play a role in up-regulating genes in cis. Int J Biochem Cell Biol 54:331–337. https://doi.org/10.1016/j.biocel.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  61. Kaczynski TJ, Au ED, Farkas MH (2022) Exploring the lncRNA localization landscape within the retinal pigment epithelium under normal and stress conditions. BMC Genomics 23(1):539. https://doi.org/10.1186/s12864-022-08777-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barman PK, Shin JE, Lewis SA, Kang S, Wu D, Wang Y, Yang X, Nagarkatti PS, Nagarkatti M, Messaoudi I, Benayoun BA, Goodridge HS (2022) Production of MHCII-expressing classical monocytes increases during aging in mice and humans. Aging Cell 21(10):e13701. https://doi.org/10.1111/acel.13701

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brazão TF, Johnson JS, Müller J, Heger A, Ponting CP, Tybulewicz VL (2016) Long noncoding RNAs in B-cell development and activation. Blood 128(7):e10-19. https://doi.org/10.1182/blood-2015-11-680843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu L, Zhang XP, Xu S, Hu MG, Zhao ZM, Zhao GD, Xiao ZH, Liu R (2023) Identification of a CD4+ conventional T cells-related lncRNAs signature associated with hepatocellular carcinoma prognosis, therapy, and tumor microenvironment. Front Immunol 13:1111246. https://doi.org/10.3389/fimmu.2022.1111246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He B, Chen W, Zeng J, Tong W, Zheng P (2021) Long noncoding RNA NKILA transferred by astrocyte-derived extracellular vesicles protects against neuronal injury by upregulating NLRX1 through binding to mir-195 in traumatic brain injury. Aging (Albany NY) 13(6):8127–8145. https://doi.org/10.18632/aging.202618

    Article  CAS  PubMed  Google Scholar 

  66. Liu N, Sun H, Li X, Cao W, Peng A, Dong S, Yu Z (2021) Downregulation of lncRNA KCNQ1OT1 relieves traumatic brain injury induced neurological deficits via promoting “M2” microglia polarization. Brain Res Bull 171:91–102. https://doi.org/10.1016/j.brainresbull.2021.03.004

    Article  CAS  PubMed  Google Scholar 

  67. Patel NA, Moss LD, Lee JY, Tajiri N, Acosta S, Hudson C, Parag S, Cooper DR, Borlongan CV, Bickford PC (2018) Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J Neuroinflammation 15(1):204. https://doi.org/10.1186/s12974-018-1240-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen Y, Wei Z, Liu J, Xie H, Wang B, Wu J, Zhu Z, Fan Y (2021) Long noncoding RNA ZFAS1 aggravates spinal cord injury by binding with miR-1953 and regulating the PTEN/PI3K/AKT pathway. Neurochem Int 147:104977. https://doi.org/10.1016/j.neuint.2021.104977

    Article  PubMed  Google Scholar 

  69. Cao Y, Jiang C, Lin H, Chen Z (2021) Silencing of long noncoding RNA growth arrest-specific 5 alleviates neuronal cell apoptosis and inflammatory responses through sponging microRNA-93 to repress PTEN expression in spinal cord injury. Front Cell Neurosci 15:646788. https://doi.org/10.3389/fncel.2021.646788

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yu Z, Zhu M, Shu D, Zhang R, Xiang Z, Jiang A, Liu S, Zhang C, Yuan Q, Hu X (2023) LncRNA PEG11as aggravates cerebral ischemia/reperfusion injury after ischemic stroke through miR-342-5p/PFN1 axis. Life Sci 313:121276. https://doi.org/10.1016/j.lfs.2022.121276

    Article  PubMed  Google Scholar 

  71. Li Y, Liu C, Fan H, Du Y, Zhang R, Zhan S, Zhang G, Bu N (2023) Gli2-induced lncRNA Peg13 alleviates cerebral ischemia-reperfusion injury by suppressing Yy1 transcription in a PRC2 complex-dependent manner. Metab Brain Dis 38(4):1389–1404. https://doi.org/10.1007/s11011-023-01159-w

    Article  CAS  PubMed  Google Scholar 

  72. Zou X, Liu S, Zou H, Zhou W, Fu H, Wei J, Zhang J, Zeng H, Tan T, Zhou W, Wu H, Chen X, Zhou X (2023) Inflammatory mechanisms of Ginkgo Biloba extract in improving memory functions through lncRNA-COX2/NF-κB pathway in mice with status epilepticus. CNS Neurosci Ther 29(1):471–482. https://doi.org/10.1111/cns.14019.

    Article  CAS  PubMed  Google Scholar 

  73. Xie X, Cao Y, Dai L, Zhou D (2023) Bone marrow mesenchymal stem cell-derived exosomal lncRNA KLF3-AS1 stabilizes Sirt1 protein to improve cerebral ischemia/reperfusion injury via miR-206/USP22 axis. Mol Med 29(1):3. https://doi.org/10.1186/s10020-022-00595-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fan W, Qin Y, Tan J, Li B, Liu Y, Rong J, Shi W, Yu B (2023) RGD1564534 represses NLRP3 inflammasome activity in cerebral injury following ischemia-reperfusion by impairing miR-101a-3p-mediated Dusp1 inhibition. Exp Neurol 359:114266. https://doi.org/10.1016/j.expneurol.2022.114266

    Article  CAS  PubMed  Google Scholar 

  75. Patel RS, Lui A, Hudson C, Moss L, Sparks RP, Hill SE, Shi Y, Cai J, Blair LJ, Bickford PC, Patel NA (2023) Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci Rep 13(1):317. https://doi.org/10.1038/s41598-022-27126-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin D, Zhang H, Zhang J, Huang K, Chen Y, Jing X, Tao E (2023) α-Synuclein Induces Neuroinflammation Injury through the IL6ST-AS/STAT3/HIF-1α Axis. Int J Mol Sci 24(2):1436. https://doi.org/10.3390/ijms24021436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ju C, Ma Y, Zuo X, Wang X, Song Z, Zhang Z, Zhu Z, Li X, Liang Z, Ding T, Hu X, Wang Z (2023) Photobiomodulation promotes spinal cord injury repair by inhibiting macrophage polarization through lncRNA TUG1-miR-1192/TLR3 axis. Cell Mol Biol Lett 28(1):5. https://doi.org/10.1186/s11658-023-00417-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He X, Zhang J, Guo Y, Yang X, Huang Y, Hao D (2023) METTL3-mediated N6-methyladenosine modification of lncRNA D26496 suppresses the proliferation and migration of Schwann cells after sciatic nerve injury. Mol Neurobiol 60(5):2413–2425. https://doi.org/10.1007/s12035-023-03222-0

    Article  CAS  PubMed  Google Scholar 

  79. Hong H, Xu G, Chen J, Zhang J, Chen C, Wu C, Jiang J, Cui Z (2022) LncRNA RMRP contributes to the development and progression of spinal cord injury by regulating miR-766-5p/FAM83A axis. Mol Neurobiol 59(10):6200–6210. https://doi.org/10.1007/s12035-022-02968-3

    Article  CAS  PubMed  Google Scholar 

  80. He X, Zhang J, Guo Y, Yang X, Huang Y, Hao D (2022) LncRNA MIAT promotes spinal cord injury recovery in rats by regulating RBFOX2-mediated alternative splicing of MCL-1. Mol Neurobiol 59(8):4854–4868. https://doi.org/10.1007/s12035-022-02896-2

    Article  CAS  PubMed  Google Scholar 

  81. Zhang XM, Zeng LN, Yang WY, Ding L, Chen KZ, Fu WJ, Zeng SQ, Liang YR, Chen GH, Wu HF (2022) Inhibition of LncRNA Vof-16 expression promotes nerve regeneration and functional recovery after spinal cord injury. Neural Regen Res 17(1):217–227. https://doi.org/10.4103/1673-5374.314322

    Article  CAS  PubMed  Google Scholar 

  82. Chu Z, Lu Y, Qin R, Dong Y (2022) LncRNA KCNQ1OT1 promotes the apoptosis and inflammatory response of microglia by regulating the miR-589-5p/NPTN axis after spinal cord injury. An Acad Bras Cienc 94(2):e20210188. https://doi.org/10.1590/0001-3765202220210188

    Article  PubMed  Google Scholar 

  83. Liu J, Lin M, Qiao F, Zhang C (2022) Exosomes derived from lncRNA TCTN2-modified mesenchymal stem cells improve spinal cord injury by miR-329-3p/IGF1R axis. J Mol Neurosci 72(3):482–495. https://doi.org/10.1007/s12031-021-01914-7

    Article  CAS  PubMed  Google Scholar 

  84. Zhou HJ, Wang LQ, Zhan RY, Zheng XJ, Zheng JS (2022) lncRNA MEG3 restrained the M1 polarization of microglia in acute spinal cord injury through the HuR/A20/NF-κB axis. Brain Pathol 32(5):e13070. https://doi.org/10.1111/bpa.13070

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xu S, Wang J, Jiang J, Song J, Zhu W, Zhang F, Shao M, Xu H, Ma X, Lyu F (2020) TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 11(8):693. https://doi.org/10.1038/s41419-020-02824-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cui SY, Zhang W, Cui ZM, Yi H, Xu DW, Liu W, Zhu XH (2021) Knockdown of long non-coding RNA LEF1-AS1 attenuates apoptosis and inflammatory injury of microglia cells following spinal cord injury. J Orthop Surg Res 16(1):6. https://doi.org/10.1186/s13018-020-02041-6

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang F, Chang S, Li J, Wang D, Li H, He X (2021) Lithium alleviated spinal cord injury (SCI)-induced apoptosis and inflammation in rats via BDNF-AS/miR-9-5p axis. Cell Tissue Res 384(2):301–312. https://doi.org/10.1007/s00441-020-03298-3

    Article  CAS  PubMed  Google Scholar 

  88. Zhao Q, Lu F, Su Q, Liu Z, Xia X, Yan Z, Zhou F, Qin R (2020) Knockdown of long noncoding RNA XIST mitigates the apoptosis and inflammatory injury of microglia cells after spinal cord injury through miR-27a/Smurf1 axis. Neurosci Lett 715:134649. https://doi.org/10.1016/j.neulet.2019.134649

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xia X, Niu H, Ma Y, Qu B, He M, Yu K, Wang E, Zhang L, Gu J, Liu G (2020) LncRNA CCAT1 protects astrocytes against OGD/R-induced damage by targeting the miR-218/NFAT5-signaling axis. Cell Mol Neurobiol 40(8):1383–1393. https://doi.org/10.1007/s10571-020-00824-3

    Article  CAS  PubMed  Google Scholar 

  90. Xiang W, Jiang L, Zhou Y, Li Z, Zhao Q, Wu T, Cao Y, Zhou J (2021) The lncRNA Ftx/miR-382-5p/Nrg1 axis improves the inflammation response of microglia and spinal cord injury repair. Neurochem Int 143:104929. https://doi.org/10.1016/j.neuint.2020.104929

    Article  PubMed  Google Scholar 

  91. An Q, Zhou Z, Xie Y, Sun Y, Zhang H, Cao Y (2021) Knockdown of long non-coding RNA NEAT1 relieves the inflammatory response of spinal cord injury through targeting miR-211-5p/MAPK1 axis. Bioengineered 12(1):2702–2712. https://doi.org/10.1080/21655979.2021.1930925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ban Y, Cui C (2020) Silencing of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) protects PC-12 cells from LPS-induced injury via targeting miR-29a. Med Sci Monit 26:e923914. https://doi.org/10.12659/MSM.923914

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shao M, Jin M, Xu S, Zheng C, Zhu W, Ma X, Lv F (2020) Exosomes from long noncoding RNA-Gm37494-ADSCs repair spinal cord injury via shifting microglial M1/M2 polarization. Inflammation 43(4):1536–1547. https://doi.org/10.1007/s10753-020-01230-z

    Article  CAS  PubMed  Google Scholar 

  94. Yu Y, Zhu M, Zhao Y, Xu M, Qiu M (2018) Overexpression of TUSC7 inhibits the inflammation caused by microglia activation via regulating miR-449a/PPAR-γ. Biochem Biophys Res Commun 503(2):1020–1026. https://doi.org/10.1016/j.bbrc.2018.06.111

    Article  CAS  PubMed  Google Scholar 

  95. Li R, Li X, Huang Y, Qiu H, Li L, Bi Z (2021) LncRNA SOX2OT knockdown alleviates lipopolysaccharide-induced damage of PC12 cells by regulating miR-331-3p/Neurod1 axis. World Neurosurg 147:e293–e305. https://doi.org/10.1016/j.wneu.2020.12.049

    Article  PubMed  Google Scholar 

  96. Guan C, Wang Y (2021) LncRNA CASC9 attenuates lactate dehydrogenase-mediated oxidative stress and inflammation in spinal cord injury via sponging miR-383-5p. Inflammation 44(3):923–933. https://doi.org/10.1007/s10753-020-01387-7

    Article  CAS  PubMed  Google Scholar 

  97. Wang Z, Long R, Yang Z, Feng C (2022) lncRNA HOTAIR inhibition by regulating HMGB1/ROS/NF-κB signal pathway promotes the recovery of spinal cord function. Comput Math Methods Med 2022:4955982. https://doi.org/10.1155/2022/4955982

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gong C, Liu L, Shen Y (2021) Biomarkers mining for spinal cord injury based on integrated multi-transcriptome expression profile data. J Orthop Surg Res 16(1):267. https://doi.org/10.1186/s13018-021-02392-8

    Article  PubMed  PubMed Central  Google Scholar 

  99. Du J, Li Y, Su Y, Zhi W, Zhang J, Zhang C, Wang J, Deng W, Zhao S (2023) LncRNA Pnky positively regulates neural stem cell migration by modulating mRNA splicing and export of target genes. Cell Mol Neurobiol 43(3):1199–1218. https://doi.org/10.1007/s10571-022-01241-4

    Article  CAS  PubMed  Google Scholar 

  100. Ye Y, Feng Z, Tian S, Yang Y, Jia Y, Wang G, Wang J, Bai W, Li J, He X (2022) HBO alleviates neural stem cell pyroptosis via lncRNA-H19/miR-423-5p/NLRP3 axis and improves neurogenesis after oxygen glucose deprivation. Oxid Med Cell Longev 2022:9030771. https://doi.org/10.1155/2022/9030771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Buranjiang G, Abuduwanke A, Li X, Abulizi G (2023) LncRNA HOTAIR enhances RCC2 to accelerate cervical cancer progression by sponging miR-331-3p. Clin Transl Oncol 25(6):1650–1660. https://doi.org/10.1007/s12094-022-03059-4

    Article  CAS  PubMed  Google Scholar 

  102. Pan B, Guo D, Jing L, Li K, Li X, Li G, Gao X, Li ZW, Zhao W, Feng H, Cao MH (2023) Long noncoding RNA Pvt1 promotes the proliferation and migration of Schwann cells by sponging microRNA-214 and targeting c-Jun following peripheral nerve injury. Neural Regen Res 18(5):1147–1153. https://doi.org/10.4103/1673-5374.353497

    Article  PubMed  Google Scholar 

  103. Li J, Sun Z, Song L (2023) LncRNA SNHG15 mediates 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal damage through targeting miR-29c-3p/SNCA axis. Neurol Res 45(2):181–190. https://doi.org/10.1080/01616412.2022.2129754

    Article  CAS  PubMed  Google Scholar 

  104. Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, Reigada D, Pita-Thomas DW, del Águila A, Muñoz-Galdeano T, Maza RM (2012) MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS ONE 7(4):e34534. https://doi.org/10.1371/journal.pone.0034534

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A (2023) Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 13:993687. https://doi.org/10.3389/fgene.2022.993687

    Article  PubMed  PubMed Central  Google Scholar 

  106. Taiana E, Bandini C, Favasuli VK, Ronchetti D, Silvestris I, Puccio N, Todoerti K, Erratico S, Giannandrea D, Bolli N, Amodio N, Ciarrocchi A, Chiaramonte R, Torrente Y, Piva R, Neri A (2023) Activation of long non-coding RNA NEAT1 leads to survival advantage of multiple myeloma cells by supporting a positive regulatory loop with DNA repair proteins. Haematologica 108(1):219–233. https://doi.org/10.3324/haematol.2022.281167

    Article  CAS  PubMed  Google Scholar 

  107. Liu X, Liang F, Sun Z, Yang J, Su Q (2023) Hyperbaric oxygen treatment in spinal cord injury recovery: profiling long noncoding RNAs. Spine (Phila Pa 1976).48(3):213-222. https://doi.org/10.1097/BRS.0000000000004525

    Article  PubMed  Google Scholar 

  108. Xu J, Yang L, Lin T (2023) β-sitosterol targets glucocorticoid receptor to reduce airway inflammation and remodeling in allergic asthma. Pulm Pharmacol Ther 78:102183. https://doi.org/10.1016/j.pupt.2022.102183

    Article  PubMed  Google Scholar 

  109. Suresh PS, Thakur KG, Sharma U (2023) Molecular docking and dynamic simulation approach to decipher steroidal sapogenins (genus Trillium) derived agonists for glucocorticoid receptor. J Biomol Struct Dyn 41(1):55–66. https://doi.org/10.1080/07391102.2021.2003864

    Article  CAS  PubMed  Google Scholar 

  110. Moliki JM, Nhundu TJ, Maritz L, Avenant C, Hapgood JP (2023) Glucocorticoids and medroxyprogesterone acetate synergize with inflammatory stimuli to selectively upregulate CCL20 transcription. Mol Cell Endocrinol 563:111855. https://doi.org/10.1016/j.mce.2023.111855

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XL designed the study. MH, XW, BOAB, YZ and XL prepared the first draft of the manuscript. MH, XW, BOAB, YZ and XL revised the manuscript. All authors approved the final paper.

Corresponding author

Correspondence to Xuehong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors agree to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Wang, X., Botchway, B.O.A. et al. The role of long noncoding ribonucleic acids in the central nervous system injury. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04875-0

Keywords

Navigation