Skip to main content
Log in

Long Non-coding RNA ANRIL Downregulation Alleviates Neuroinflammation in an Ischemia Stroke Model via Modulation of the miR-671-5p/NF-κB Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the role and underlying mechanism of the long non-coding RNA ANRIL (antisense noncoding RNA in the INK4 locus, ANRIL) in ischemia stroke (IS) injury. Downregulation of ANRIL by right intracerebroventricular injected si-ANRIL in middle cerebral artery occlusion-reperfusion (MCAO/R) C57/BL6 mice and by transferring si-ANRIL in oxygen glucose deprivation/reperfusion (OGD/R) HT22 cells. The results showed that ANRIL levels increased in IS model, downregulation of ANRIL reduced infract area, neurological deficit scores and injured cells, and prolong fall latency time in MCAO/R mice, improved cell viability and reduced cell cytotoxicity in OGD/R cells. Fluorescence in Situ Hybridization detected that there were both ANRIL and miR-671-5p in neurons; miranda v3.3a and dual luciferase reporter assay demonstrated that miR-671-5p was one of direct target of ANRIL; and our previously published research demonstrated that NF-κB was one of direct target of miR-671-5p. Downregulation of ANRIL alleviated neuroinflammation and reduced p-NF-κB, NF-κB, pro-inflammatory cytokines (IL-1β, IL-6, TNF-a), and iNOS, which diminished by miR-671-5p antagomir both in in vivo and in vitro IS models. Downregulation of ANRIL alleviated disruption of blood brain barrier, and protected against tight junction (ZO-1, occludin and claudin 5) disorder in MCAO/R mice. This work clarified that downregulation of ANRIL reduced neuroinflammation by negatively regulating miR-671-5p to inhibit NF-κB in IS models, which provided a theoretical foundation for the protective effect of downregulating ANRIL for IS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed are available from the corresponding author by emailing 100798@cqmu.edu.cn.

References

  1. Phipps MS, Cronin CA (2020) Management of acute ischemic stroke. BMJ 368:l6983. https://doi.org/10.1136/bmj.l6983

    Article  PubMed  Google Scholar 

  2. Campbell BCV, Khatri P (2020) Stroke. Lancet 396:129–142. https://doi.org/10.1016/S0140-6736(20)31179-X

    Article  PubMed  Google Scholar 

  3. Ekker MS, Boot EM, Singhal AB, Tan KS, Debette S, Tuladhar AM, de Leeuw F-E (2018) Epidemiology, aetiology, and management of ischaemic stroke in young adults. Lancet Neurol 17:790–801. https://doi.org/10.1016/S1474-4422(18)30233-3

    Article  PubMed  Google Scholar 

  4. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-020-00315-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16:167–179. https://doi.org/10.1038/nrd.2016.117

    Article  CAS  PubMed  Google Scholar 

  7. Wolska M, Jarosz-Popek J, Junger E, Wicik Z, Porshoor T, Sharif L, Czajka P, Postula M, Mirowska-Guzel D, Czlonkowska A, Eyileten C (2021) Long non-coding RNAs as promising therapeutic approach in ischemic stroke: a comprehensive review. Mol Neurobiol 58:1664–1682. https://doi.org/10.1007/s12035-020-02206-8

    Article  CAS  PubMed  Google Scholar 

  8. Bao M-H, Szeto V, Yang BB, Zhu S-Z, Sun H-S, Feng Z-P (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9:281. https://doi.org/10.1038/s41419-018-0282-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan Y, Jiao Q, Wei W, Zheng T, Yang X, Xin W (2021) Emerging role of LncRNAs in ischemic stroke-novel insights into the regulation of inflammation. J Inflamm Res 14:4467–4483. https://doi.org/10.2147/JIR.S327291

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baietti MF, Zhao P, Crowther J, Sewduth RN, De Troyer L, Debiec-Rychter M, Sablina AA (2021) Loss of 9p21 regulatory hub promotes kidney cancer progression by upregulating HOXB13. Mol Cancer Res 19:979–990. https://doi.org/10.1158/1541-7786.MCR-20-0705

    Article  CAS  PubMed  Google Scholar 

  11. Abdeahad H, Bahrami A, Saeedi N, Shabani M, Pezeshki M, Khazaei M, Shafiee M, Ghorbani E, Ferns GA, Soleimanpour S, Rahmani F, Soleimani A, Fiuji H, Ryzhikov M, Avan A, Mahdi Hassanian S (2020) Association between genetic variants at 9p21 locus with risk of breast cancer: a systematic review and meta-analysis. Pathol Res Pract 216:152987. https://doi.org/10.1016/j.prp.2020.152987

    Article  CAS  PubMed  Google Scholar 

  12. Leu H-B, Chung C-M, Chen J-W, Pan W-H (2019) The Mediterranean diet reduces the genetic risk of chromosome 9p21 for myocardial infarction in an Asian population community cohort. Sci Rep 9:18405. https://doi.org/10.1038/s41598-019-54938-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magdy T, Burridge PW (2019) Unraveling difficult answers: from genotype to phenotype in coronary artery disease. Cell Stem Cell 24:203–205. https://doi.org/10.1016/j.stem.2019.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou L, Zheng D, Song X, Zhu J, Qi W, Ding S, Zhang Y, Xu Q, Han X, Zhao Y, Zhao T, Guo S, Shi Y, Yang L, Ye L (2019) Alternated mRNA expression of the genes in chromosome 9p21 is associated with coronary heart disease and genetic variants in chromosome 9p21. Thromb Res 178:17–19. https://doi.org/10.1016/j.thromres.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  15. Chen J-X, Liu J, Hu F, Bi Y, Li M, Zhao L (2019) Genetic variants on chromosome 9p21 confer risks of cerebral infarction in the Chinese population: a meta-analysis. Int J Immunopathol Pharmacol. https://doi.org/10.1177/2058738419847852

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han X, Wang C, Tang D, Shi Y, Gao M (2020) Association of genetic polymorphisms in chromosome 9p21 with risk of ischemic stroke. Cytokine 127:154921. https://doi.org/10.1016/j.cyto.2019.154921

    Article  CAS  PubMed  Google Scholar 

  17. Tan C, Liu J, Wei J, Yang S (2019) Effects of variants on the risk of ischemic stroke: a meta-analysis. Biosci Rep. https://doi.org/10.1042/BSR20182127

  18. Yang J, Gu L, Guo X, Huang J, Chen Z, Huang G, Kang Y, Zhang X, Long J, Su L (2018) LncRNA ANRIL expression and ANRIL gene polymorphisms contribute to the risk of ischemic stroke in the Chinese Han population. Cell Mol Neurobiol 38:1253–1269. https://doi.org/10.1007/s10571-018-0593-6

    Article  CAS  PubMed  Google Scholar 

  19. Feng L, Guo J, Ai F (2019) Circulating long noncoding RNA ANRIL downregulation correlates with increased risk, higher disease severity and elevated pro-inflammatory cytokines in patients with acute ischemic stroke. J Clin Lab Anal 33:e22629. https://doi.org/10.1002/jcla.22629

    Article  CAS  PubMed  Google Scholar 

  20. Toden S, Zumwalt TJ, Goel A (2021) Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 1875:188491. https://doi.org/10.1016/j.bbcan.2020.188491

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G (2019) Trends in the development of miRNA bioinformatics tools. Brief Bioinform 20:1836–1852. https://doi.org/10.1093/bib/bby054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiong W, Qu Y, Chen H, Qian J (2019) Insight into long noncoding RNA-miRNA-mRNA axes in myocardial ischemia-reperfusion injury: the implications for mechanism and therapy. Epigenomics 11:1733–1748. https://doi.org/10.2217/epi-2019-0119

    Article  CAS  PubMed  Google Scholar 

  23. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kühn R, Rosenmund C, Birchmeier C, Rajewsky N (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. https://doi.org/10.1126/science.aam8526

    Article  PubMed  Google Scholar 

  24. Deng L, Guo Y, Liu J, Wang X, Chen S, Wang Q, Rao J, Wang Y, Zuo T, Hu Q, Zhao X, Dong Z (2021) miR-671-5p attenuates neuroinflammation via suppressing NF-κB expression in an acute ischemic stroke model. Neurochem Res 46:1801–1813. https://doi.org/10.1007/s11064-021-03321-1

    Article  CAS  PubMed  Google Scholar 

  25. Zheng L, Huang Y, Wang X, Wang X, Chen W, Cheng W, Pan C (2020) Inhibition of TIM-4 protects against cerebral ischaemia-reperfusion injury. J Cell Mol Med 24:1276–1285. https://doi.org/10.1111/jcmm.14754

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi K, Hasegawa Y, Takemoto Y, Cao C, Takeya H, Komohara Y, Mukasa A, Kim-Mitsuyama S (2019) Continuous intracerebroventricular injection of Porphyromonas gingivalis lipopolysaccharide induces systemic organ dysfunction in a mouse model of Alzheimer’s disease. Exp Gerontol 120:1–5. https://doi.org/10.1016/j.exger.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  27. Wang T, Zhao N, Peng L, Li Y, Huang X, Zhu J, Chen Y, Yu S, Zhao Y (2020) DJ-1 regulates microglial polarization through P62-mediated TRAF6/IRF5 signaling in cerebral ischemia-reperfusion. Front Cell Dev Biol 8:593890. https://doi.org/10.3389/fcell.2020.593890

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu Y, Zhou M, Li Y, Li Y, Hua Y, Fan Y (2021) Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochem Pharmacol 186:114464. https://doi.org/10.1016/j.bcp.2021.114464

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y-P, Jin Y-P, Wu X-S, Yang Y, Li Y-S, Li H-F, Xiang S-S, Song X-L, Jiang L, Zhang Y-J, Huang W, Chen S-L, Liu F-T, Chen C, Zhu Q, Chen H-Z, Shao R, Liu Y-B (2019) LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer 18:167. https://doi.org/10.1186/s12943-019-1097-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang K, Qi M, Yang Y, Xu P, Zhua Y, Zhang J (2019) Circulating lncRNA ANRIL in the serum of patients with ischemic stroke. Clin Lab. https://doi.org/10.7754/Clin.Lab.2019.190143

    Article  PubMed  Google Scholar 

  31. Fathy N, Kortam MA, Shaker OG, Sayed NH (2021) Long noncoding RNAs MALAT1 and ANRIL gene variants and the risk of cerebral ischemic stroke: an association study. ACS Chem Neurosci 12:1351–1362. https://doi.org/10.1021/acschemneuro.0c00822

    Article  CAS  PubMed  Google Scholar 

  32. Bai Y, Nie S, Jiang G, Zhou Y, Zhou M, Zhao Y, Li S, Wang F, Lv Q, Huang Y, Yang Q, Li Q, Li Y, Xia Y, Liu Y, Liu J, Qian J, Li B, Wu G, Wu Y, Wang B, Cheng X, Yang Y, Ke T, Li H, Ren X, Ma X, Liao Y, Xu C, Tu X, Wang QK (2014) Regulation of CARD8 expression by ANRIL and association of CARD8 single nucleotide polymorphism rs2043211 (p. C10X) with ischemic stroke. Stroke 45:383–388. https://doi.org/10.1161/STROKEAHA.113.003393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B (2020) Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 254:116900. https://doi.org/10.1016/j.lfs.2019.116900

    Article  CAS  PubMed  Google Scholar 

  34. Wang J-Y, Yang Y, Ma Y, Wang F, Xue A, Zhu J, Yang H, Chen Q, Chen M, Ye L, Wu H, Qa Z (2020) Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother 121:109627. https://doi.org/10.1016/j.biopha.2019.109627

    Article  CAS  PubMed  Google Scholar 

  35. Guo Y, Hong W, Wang X, Zhang P, Körner H, Tu J, Wei W (2019) MicroRNAs in microglia: how do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci 12:125. https://doi.org/10.3389/fnmol.2019.00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar S, Williams D, Sur S, Wang J-Y, Jo H (2019) Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 114:76–92. https://doi.org/10.1016/j.vph.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  37. Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X, Guo W, Li X, Yue L, Wang B, Qu Y (2019) Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front Immunol 10:2408. https://doi.org/10.3389/fimmu.2019.02408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Huang L, Liu G, Fan W, Li B, Liu R, Wang Z, Fan Q, Xiao W, Li Y, Fang W (2020) Ginkgo diterpene lactones inhibit cerebral ischemia/reperfusion induced inflammatory response in astrocytes via TLR4/NF-κB pathway in rats. J Ethnopharmacol 249:112365. https://doi.org/10.1016/j.jep.2019.112365

    Article  CAS  PubMed  Google Scholar 

  39. Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, Gan L-M, Cao H, Liang Z (2016) Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol. https://doi.org/10.1080/15476286.2015.1122164

    Article  PubMed  Google Scholar 

  40. Kaltschmidt C, Greiner JFW, Kaltschmidt B (2021) The transcription factor NF-κB in stem cells and development. Cells. https://doi.org/10.3390/cells10082042

    Article  PubMed  PubMed Central  Google Scholar 

  41. Escobar I, Xu J, Jackson CW, Perez-Pinzon MA (2019) Altered neural networks in the Papez circuit: implications for cognitive dysfunction after cerebral ischemia. J Alzheimers Dis 67:425–446. https://doi.org/10.3233/JAD-180875

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mijajlović MD, Pavlović A, Brainin M, Heiss W-D, Quinn TJ, Ihle-Hansen HB, Hermann DM, Assayag EB, Richard E, Thiel A, Kliper E, Shin Y-I, Kim Y-H, Choi S, Jung S, Lee Y-B, Sinanović O, Levine DA, Schlesinger I, Mead G, Milošević V, Leys D, Hagberg G, Ursin MH, Teuschl Y, Prokopenko S, Mozheyko E, Bezdenezhnykh A, Matz K, Aleksić V, Muresanu D, Korczyn AD, Bornstein NM (2017) Post-stroke dementia—a comprehensive review. BMC Med 15:11. https://doi.org/10.1186/s12916-017-0779-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ouyang F, Jiang Z, Chen X, Chen Y, Wei J, Xing S, Zhang J, Fan Y, Zeng J (2021) Is cerebral amyloid-β deposition related to post-stroke cognitive impairment? Transl Stroke Res. https://doi.org/10.1007/s12975-021-00921-5

    Article  PubMed  Google Scholar 

  44. Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD (2017) Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 20:1434–1447. https://doi.org/10.1038/nn.4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cuartero MI, de la Parra J, Pérez-Ruiz A, Bravo-Ferrer I, Durán-Laforet V, García-Culebras A, García-Segura JM, Dhaliwal J, Frankland PW, Lizasoain I, Moro MÁ (2019) Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. J Clin Investig 129:1536–1550. https://doi.org/10.1172/JCI120412

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  47. Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, Zhao RC, Zhang J (2019) Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway. Aging (Albany NY) 11:11391–11415. https://doi.org/10.18632/aging.102537

    Article  CAS  Google Scholar 

  48. Wu W, Zhong W, Lang B, Hu Z, He J, Tang X (2018) Thrombopoietin could protect cerebral tissue against ischemia-reperfusion injury by suppressing NF-κB and MMP-9 expression in rats. Int J Med Sci 15:1341–1348. https://doi.org/10.7150/ijms.27543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang S, An Q, Wang T, Gao S, Zhou G (2018) Autophagy- and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood-brain barrier permeability during early reperfusion in stroke. Neuroscience 377:126–137. https://doi.org/10.1016/j.neuroscience.2018.02.035

    Article  CAS  PubMed  Google Scholar 

  50. Mohamed HA, Said RS (2021) Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-kB/TGF-β/MMP-9 pathways. Int Immunopharmacol 92:107347. https://doi.org/10.1016/j.intimp.2020.107347

    Article  CAS  PubMed  Google Scholar 

  51. Ha S-H, Kwon K-M, Park J-Y, Abekura F, Lee Y-C, Chung T-W, Ha K-T, Chang HW, Cho S-H, Kim J-S, Kim C-H (2019) Esculentoside H inhibits colon cancer cell migration and growth through suppression of MMP-9 gene expression via NF-kB signaling pathway. J Cell Biochem 120:9810–9819. https://doi.org/10.1002/jcb.28261

    Article  CAS  PubMed  Google Scholar 

  52. Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G, Zhang X (2017) Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflamm 14:187. https://doi.org/10.1186/s12974-017-0963-x

    Article  CAS  Google Scholar 

  53. Revuelta M, Elicegui A, Moreno-Cugnon L, Bührer C, Matheu A, Schmitz T (2019) Ischemic stroke in neonatal and adult astrocytes. Mech Ageing Dev 183:111147. https://doi.org/10.1016/j.mad.2019.111147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all editors and reviewers for their patience and their valuable comments on this manuscript. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was funded by Research Innovation of Graduate Students in Chongqing (CYB19165), Natural Science Foundation of Chongqing (cstc2019jcyjmsxmX0630), Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0325), Chinese Medicine Science and Technology project of Chongqing Municipal Health committee, Grand No. 2021ZY3794 and General Topics of Basic Research and Frontier Exploration of Yuzhong district, Chongqing (20210121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Dong.

Ethics declarations

Conflict of interest

All of authors declare that they have no conflict of interest.

Ethical Approval

Ethical license number is SYXK YU 2010-001 that was approved by ethics Committee of Chongqing Medical University. Animal suffering was minimized wherever possible.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Jiang, J., Chen, S. et al. Long Non-coding RNA ANRIL Downregulation Alleviates Neuroinflammation in an Ischemia Stroke Model via Modulation of the miR-671-5p/NF-κB Pathway. Neurochem Res 47, 2002–2015 (2022). https://doi.org/10.1007/s11064-022-03585-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03585-1

Keywords

Navigation