Skip to main content

Advertisement

Log in

Interfering TUG1 Attenuates Cerebrovascular Endothelial Apoptosis and Inflammatory injury After Cerebral Ischemia/Reperfusion via TUG1/miR-410/FOXO3 ceRNA Axis

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Background Emerging studies illustrate that long non-coding RNA TUG1 (TUG1) participates in neuron death after ischemia. However, the role of TUG1 in cerebral ischemia/reperfusion (CI/R) injury through cerebrovascular pathology was undetermined yet. Methods Expression of TUG1, miRNA-410-3p (miR-410), and forkhead box O3 (FOXO3) was detected by RT-qPCR and western blot. Neural function, apoptosis, and inflammatory damage were assessed by triphenyltetrazolium chloride straining, modified neurological severity score, fluorescence-activated cell sorting method, and western blot. The relationship among TUG1, miR-410, and FOXO3 was identified by dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation. Results TUG1 was upregulated in middle cerebral artery occlusion/reperfusion (MCAO/R) mice and oxygen–glucose deprivation/reoxygenation (OGD/R)-induced mouse brain microvascular endothelial cells (BMECs) in a certain of time-dependent manner. Blockage of TUG1 decreased infarct volume and increased neurological score in MCAO/R mice, accompanied with elevated Bcl-2 expression and declined expression of IL-1β, IL-6, TNF-α, Bax, and cleaved caspase 3. Abovementioned proteins were similarly expressed in OGD/R-induced BMECs with TUG1 knockdown, paralleled with diminished apoptosis rate. Either, miR-410 overexpression and FOXO3 interference could suppress OGD/R-induced inflammatory and apoptotic responses. Of note, TUG1 and FOXO3 are competing endogenous RNAs (ceRNAs) for miR-410 via target binding. Depleting miR-410 counteracted the role of TUG1 exhaustion, and reinforcing FOXO3 abated the effect of miR-410 overexpression. Conclusion Exhausting TUG1 could alleviate CI/R-induced inflammatory injury and apoptosis in brain tissues and BMECs via targeting miR-410/FOXO3 axis, suggesting an innovative perspective from cerebrovascular endothelial cells in the pathogenesis and treatment of CI/R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhirong He conceived, designed, and revised the current study. Yanyan Zhao, Yongxia Zhu, Weihua Wang, Xin Liu, and Fen Lu analyzed the data. Zhirong He wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fen Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhao, Y., Zhu, Y. et al. Interfering TUG1 Attenuates Cerebrovascular Endothelial Apoptosis and Inflammatory injury After Cerebral Ischemia/Reperfusion via TUG1/miR-410/FOXO3 ceRNA Axis. Neurotox Res 40, 1–13 (2022). https://doi.org/10.1007/s12640-021-00446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00446-7

Keywords

Navigation