Skip to main content
Log in

A ternary polymer flame retardant and its synergistic flame retardant effect with piperazine pyrophosphate in EP

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Combining bio-based functional reagents and biopolymers has become a solution to address the needs of sustainability, health, and safety as society has grown. This study developed a waterproof and intumescent flame retardant system for epoxy resin (EP) by combining hexachlorocyclotriphosphazene and melamine with vanillin, synthesizing a ternary polymer flame retardant (HCPVM), combining carbon and gas sources, and using piperazine pyrophosphate (PAPP) as an acid source. The test results showed that HCPVM could participate in the curing reaction of EP and improve the mechanical properties of EP material. At the same time, the flame retardancy and water resistance of the material have been significantly improved. The peak heat release rate (PHRR) of EP/3.5 PAPP/0.5 HCPVM was 65.43% lower than that of pure EP. Additionally, the system's LOI and UL-94 did not significantly change after five days of boiling. In summary, this study's waterproof bio-based intumescent flame retardant solution broadens the application possibilities for EP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gao M, Wu W, Yan Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim. 2009;95(2):605–8. https://doi.org/10.1007/s10973-008-9766-8.

    Article  CAS  Google Scholar 

  2. Jin FL, Li X, Park SJ. Synthesis and application of epoxy resins: a review. J Ind Eng Chem. 2015;29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026.

    Article  CAS  Google Scholar 

  3. Chen R, Luo ZJ, Yu XJ, Tang H, Zhou Y, Zhou H. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin. Carbohydr Polym. 2020;245:7. https://doi.org/10.1016/j.carbpol.2020.116530.

    Article  CAS  Google Scholar 

  4. Huo SQ, Yang S, Wang J, et al. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances. J Hazard Mater. 2020;386:121984. https://doi.org/10.1016/j.jhazmat.2019.121984.

    Article  CAS  PubMed  Google Scholar 

  5. Xu Y, Li J, Shen R, et al. Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins. J Therm Anal Calorim. 2021;146(1):153–64. https://doi.org/10.1007/s10973-020-10420-8.

    Article  CAS  Google Scholar 

  6. Song Q, Wu H, Liu H, Han X, Qu H, Xu J. Synergistic flame-retardant effects of ammonium polyphosphate and AC-Fe2O3 in epoxy resin. J Therm Anal Calorim. 2019;138(2):1259–67. https://doi.org/10.1007/s10973-019-08247-z.

    Article  CAS  Google Scholar 

  7. Enescu D, Frache A, Lavaselli M, Monticelli O, Marino F. Novel phosphorous-nitrogen intumescent flame retardant system: its effects on flame retardancy and thermal properties of polypropylene. Polym Degrad Stab. 2013;98(1):297–305. https://doi.org/10.1016/j.polymdegradstab.2012.09.012.

    Article  CAS  Google Scholar 

  8. Ke CH, Li J, Fang KY, Zhu QL, Zhu J, Yan Q, et al. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab. 2010;95(5):763–70. https://doi.org/10.1016/j.polymdegradstab.2012.09.012.

    Article  CAS  Google Scholar 

  9. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez-Cuesta JM. Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym Degrad Stab. 2015;113:135–43. https://doi.org/10.1016/j.polymdegradstab.2014.12.015.

    Article  CAS  Google Scholar 

  10. Feng JX, Su SP, Zhu J. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym Adv Technol. 2011;22(7):1115–22. https://doi.org/10.1002/pat.1954.

    Article  CAS  Google Scholar 

  11. Xie F, Wang YZ, Yang B, Liu Y. A novel intumescent flame-retardant polyethylene system. Macromol Mater Eng. 2006;291(3):247–53. https://doi.org/10.1002/mame.200500356.

    Article  CAS  Google Scholar 

  12. Ma D, Li J. Synthesis of a bio-based triazine derivative and its effects on flame retardancy of polypropylene composites. J Appl Polym. 2020;137(1):47367. https://doi.org/10.1002/app.47367.

    Article  CAS  Google Scholar 

  13. Song KP, Wang YJ, Ruan F, Liu JP, Li NH, Li XL. Effects of a macromolecule spirocyclic inflatable flame retardant on the thermal and flame retardant properties of epoxy resin. Polym-Basel. 2020;12(1):132. https://doi.org/10.3390/polym12010132.

    Article  CAS  Google Scholar 

  14. Wang J, Guo Y, Zhao SP, Huang RY, Kong XJ. A novel intumescent flame retardant imparts high flame retardancy to epoxy resin. Polym Adv Technol. 2020;31(5):932–40. https://doi.org/10.1002/pat.4827.

    Article  CAS  Google Scholar 

  15. Xiao X, Zhai JG, Chen T, Mai YY, Hu S, Ye W, et al. Flame retardant properties of polyamide 6 with piperazine pyrophosphate. Plast Rubber Compos. 2017;46(5):193–9. https://doi.org/10.1080/14658011.2017.1308068.

    Article  CAS  Google Scholar 

  16. Yuan Z, Wen H, Liu Y, Wang Q. Synergy between piperazine pyrophosphate and aluminum diethylphosphinate in flame retarded acrylonitrile-butadiene-styrene copolymer. Polym Degrad Stab. 2021;190:109639. https://doi.org/10.1016/j.polymdegradstab.2021.109639.

    Article  CAS  Google Scholar 

  17. Li SS, Liu Y, Liu YS, Wan Q. Synergistic effect of piperazine pyrophosphate and epoxy-octavinyl silsesquioxane on flame retardancy and mechanical properties of epoxy resin. Compos Part B Eng. 2021;223:109115. https://doi.org/10.1016/j.compositesb.2021.109115.

    Article  CAS  Google Scholar 

  18. Xiao F, Fontaine G, Bourbigot S. Improvement of flame retardancy and antidripping properties of intumescent polybutylene succinate combining piperazine pyrophosphate and zinc borate. ACS Appl Polym Mater. 2022;4(3):1911–21. https://doi.org/10.1021/acsapm.1c01755.

    Article  CAS  Google Scholar 

  19. Chu FK, Ma C, Zhang T, Xu ZM, Mu XW, Cai W, et al. Renewable vanillin-based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset. Compos Part B Eng. 2020;190:107925. https://doi.org/10.1016/j.compositesb.2020.107925.

    Article  CAS  Google Scholar 

  20. Huang YS, Ma TT, Wang QW, Guo CG. Synthesis of biobased flame-retardant carboxylic acid curing agent and application in wood surface coating. ACS Sustain Chem Eng. 2019;7(17):14727–38. https://doi.org/10.1021/acssuschemeng.9b02645.

    Article  CAS  Google Scholar 

  21. Zhang K, Wu H, Wang T, et al. Flame-retardant effect of cross-linked phosphazene derivatives and pentaerythritol derivatives on polypropylene. J Therm Anal Calorim. 2021;145(6):3067–75. https://doi.org/10.1007/s10973-020-09898-z.

    Article  CAS  Google Scholar 

  22. Aljamal A, Marosi G, Szolnoki B. Investigation of the modes of action for phosphorous flame retardants in a fully waterborne sugar-based epoxy resin. J Therm Anal Calorim. 2023;148(2):281–92. https://doi.org/10.1007/s10973-022-11736-3.

    Article  CAS  Google Scholar 

  23. Wang JY, Xu B, Wang XD, Liu YT. A phosphorous-based bi-functional flame retardant for rigid polyurethane foam. Polym Degrad Stab. 2021;186:109516. https://doi.org/10.1016/j.polymdegradstab.2021.109516.

    Article  CAS  Google Scholar 

  24. Shariatinia Z, Javeri N, Shekarriz S. Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohydr Polym. 2015;118:183–98. https://doi.org/10.1016/j.carbpol.2014.11.039.

    Article  CAS  PubMed  Google Scholar 

  25. Liu R, Wang XD. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin. Polym Degrad Stab. 2009;94(4):617–24. https://doi.org/10.1016/j.polymdegradstab.2009.01.008.

    Article  CAS  Google Scholar 

  26. Alhumaimess MS, Alsohaimi IH, Alqadami AA, et al. Recyclable glutaraldehyde cross-linked polymeric tannin to sequester hexavalent uranium from aqueous solution. J Mol Liq. 2019;281:29–38. https://doi.org/10.1016/j.molliq.2019.02.040.

    Article  CAS  Google Scholar 

  27. Dai SQ, Chen Y, Yang JX, He F, Chen C, Xie HF. Surface treatment of nanozirconia fillers to strengthen dental bisphenol A-Glycidyl Methacrylate-Based resin composites. Int J Nanomed. 2019;14:9185–97. https://doi.org/10.2147/IJN.S223392.

    Article  CAS  Google Scholar 

  28. Martinez-Iniesta AD, Morelos-Gomez A, Munoz-Sandoval E, Lopez-Urias F. Nitrogen-phosphorus doped graphitic nano onion-like structures: experimental and theoretical studies. RSC Adv. 2021;11(5):2793–803. https://doi.org/10.1039/D0RA10019F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai H, Han DY, Wang XN, et al. High specific surface area defective g-C3N4 nanosheets with enhanced photocatalytic activity prepared by using glyoxylic acid mediated melamine. Mater Chem Phys. 2021;256(7):123755. https://doi.org/10.1016/j.matchemphys.2020.123755.

    Article  CAS  Google Scholar 

  30. Pappas GS, Ferrari S, Huang XB, Bhagat R, Haddleton DM, Wan CY. Heteroatom Doped-Carbon nanospheres as anodes in lithium ion batteries. Materials. 2016;9(1):35. https://doi.org/10.3390/ma9010035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li P, Wang B, Liu YY, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydr Polym. 2020;237:116173. https://doi.org/10.1016/j.carbpol.2020.116173.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang XQ, Xu HB, Fan XY. Grafting of amine-capped cross-linked polyphosphazenes onto carbon fiber surfaces: a novel coupling agent for fiber reinforced composites. RSC Adv. 2014;4(24):12198–205. https://doi.org/10.1039/C3RA47213B.

    Article  CAS  Google Scholar 

  33. Salaun F, Vroman I. Influence of core materials on thermal properties of melamine-formaldehyde microcapsules. Eur Polym J. 2008;44(3):849–60. https://doi.org/10.1016/j.eurpolymj.2007.11.018.

    Article  CAS  Google Scholar 

  34. Price D, Yan L, Hull TR. Burning behaviour of foam/cotton fabric combinations in the cone calorimeter. Polym Degrad Stab. 2002;77(2):213–20. https://doi.org/10.1016/s0141-3910(02)00036-8.

    Article  CAS  Google Scholar 

  35. Ding H, Huang K, Li S, Xu L, Xia J, Li M. Synthesis of a novel phosphorus and nitrogen-containing bio-based polyol and its application in flame retardant polyurethane foam. J Anal Appl Pyrol. 2017;128:102–13. https://doi.org/10.1016/j.jaap.2017.10.020.

    Article  CAS  Google Scholar 

  36. Zhang H, Meng D, Wang W, et al. Fabrication of phytic acid embellished kaolinite and its effect on the flame retardancy and thermal stability of ethylene vinyl acetate composites. J Appl Polym Sci. 2021;138(46):51364. https://doi.org/10.1002/app.51364.

    Article  CAS  Google Scholar 

  37. Chen X, Zhuo J, Jiao C. Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stab. 2012;97(11):2143–7. https://doi.org/10.1016/j.polymdegradstab.2012.08.016.

    Article  CAS  Google Scholar 

  38. Xing W, Zhang P, Song L, Wang X, Hu Y. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating. Mater Res Bull. 2014;49:1–6. https://doi.org/10.1016/j.materresbull.2013.08.033.

    Article  CAS  Google Scholar 

  39. Cai W, Wang J, Pan Y, et al. Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J Hazard Mater. 2018;352:57–69. https://doi.org/10.1016/j.jhazmat.2018.03.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation Project [Grant Numbers 52273072]; the multidisciplinary research project of Hebei University [Grant Numbers DXK202003]; Key research and development projects of Hebei Province [Grant Numbers 19211205D]; Open project of Hebei Provincial key laboratory of hazardous chemicals safety and control technology [Grant Numbers 20211204-3].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjuan Wu, Man Zhang or Hongqiang Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Wu, H., Zhang, M. et al. A ternary polymer flame retardant and its synergistic flame retardant effect with piperazine pyrophosphate in EP. J Therm Anal Calorim 148, 13837–13850 (2023). https://doi.org/10.1007/s10973-023-12568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12568-5

Keywords

Navigation