Skip to main content
Log in

Synthesis of phosphorous-containing bio-based curing agent for flame retardant epoxy resin system

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

A phosphorous containing primary amine-based curing agent, 4-(((3-aminopropyl) imino) methyl)-2-methoxyphenyl(4-(((3-aminopropyl) imino) methyl)-2-methoxyphenyl) phenylphosphonate (VDTS2), was successfully synthesized. The chemical structure of the intermediate and the curing agent was characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance spectroscopy. An epoxy resin was then cured with the phosphorous-based curing agent used in different ratios and with a petroleum-based curing agent. The flame-retardant (FR) properties and thermal decomposition of the respective films were investigated by the limiting oxygen index (LOI), UL-94 burning test, differential scanning calorimetry, thermogravimetric analysis (TGA) and FTIR spectroscopy. Scanning electron microscopy (SEM) analysis was also conducted to study the characteristics of the char obtained. The results of the FR tests showed that the epoxy films cured with the novel amine VDTS2 were able to achieve flame retardancy with an LOI value of 35% and a UL-94 rating of V-0. The TGA analysis showed that the residue of the flame retardant epoxy systems was almost double that of the epoxy resin cured with the petroleum-based amine. The respective films’ mechanical properties were also investigated, and it was observed that the phosphorous-containing amine-based curing agent showed potential to replace the petroleum-based amine for crosslinking epoxy resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Müller, P, Morys, M, Sut, A, Jäger, C, Illerhaus, B, Schartel, B, “Melamine Poly(zinc phosphate) as Flame Retardant in Epoxy Resin: Decomposition Pathways, Molecular Mechanisms and Morphology of Fire Residues.” Polym. Degrad. Stab., 130 307–319. https://doi.org/10.1016/j.polymdegradstab.2016.06.023 (2016)

    Article  CAS  Google Scholar 

  2. Schartel, B, et al. “Pyrolysis and Fire Behaviour of Epoxy Systems Containing a Novel 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based Diamino Hardener.” Eur. Polym. J., 44 (3) 704–715. https://doi.org/10.1016/j.eurpolymj.2008.01.017 (2008)

    Article  CAS  Google Scholar 

  3. Wang, J, Qian, L, Huang, Z, Fang, Y, Qiu, Y, “Synergistic Flame-Retardant Behavior and Mechanisms of Aluminum Poly-Hexamethylenephosphinate and Phosphaphenanthrene in Epoxy Resin.” Polym. Degrad. Stab., 130 173–181. https://doi.org/10.1016/j.polymdegradstab.2016.06.010 (2016)

    Article  CAS  Google Scholar 

  4. Xu, MJ, Xu, GR, Leng, Y, Li, B, “Synthesis of a Novel Flame Retardant Based on Cyclotriphosphazene and DOPO Groups and Its Application in Epoxy Resins.” Polym. Degrad. Stab., 123 105–114. https://doi.org/10.1016/j.polymdegradstab.2015.11.018 (2016)

    Article  CAS  Google Scholar 

  5. Yang, S, Wang, J, Huo, S, Wang, M, Wang, J, Zhang, B, “Synergistic Flame-Retardant Effect of Expandable Graphite and Phosphorus-Containing Compounds for Epoxy Resin: Strong Bonding of Different Carbon Residues.” Polym. Degrad. Stab., 128 89–98. https://doi.org/10.1016/j.polymdegradstab.2016.03.017 (2016)

    Article  CAS  Google Scholar 

  6. Einhorn, IN, “Fire Retardance of Polymeric Materials.” J. Macromol. Sci.: Part D-Rev. Polym. Proces., 1 (2) 113–84 (1971)

    CAS  Google Scholar 

  7. Lu, S-Y, Hamerton, I, “Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers.” Prog. Polym. Sci., 27 1661–1712. https://doi.org/10.1055/s-2002-33635 (2002)

    Article  CAS  Google Scholar 

  8. Zhang, X, et al. “Polypyrrole Doped Epoxy Resin Nanocomposites with Enhanced Mechanical Properties and Reduced Flammability.” J. Mater. Chem. C, 3 (1) 162–176. https://doi.org/10.1039/c4tc01978d (2015)

    Article  CAS  Google Scholar 

  9. Shao, ZB, Deng, C, Tan, Y, Chen, MJ, Chen, L, Wang, YZ, “Flame Retardation of Polypropylene via a Novel Intumescent Flame Retardant: Ethylenediamine-Modified Ammonium Polyphosphate.” Polym. Degrad. Stab., 106 88–96. https://doi.org/10.1016/j.polymdegradstab.2013.10.005 (2014)

    Article  CAS  Google Scholar 

  10. Chen, MJ, Lin, YC, Wang, XN, Zhong, L, Li, QL, Liu, ZG, “Influence of Cuprous Oxide on Enhancing the Flame Retardancy and Smoke Suppression of Epoxy Resins Containing Microencapsulated Ammonium Polyphosphate.” Ind. Eng. Chem. Res., 54 (51) 12705–12713. https://doi.org/10.1021/acs.iecr.5b03877 (2015)

    Article  CAS  Google Scholar 

  11. Tan, Y, et al. “Piperazine-Modified Ammonium Polyphosphate as Monocomponent Flame-Retardant Hardener for Epoxy Resin: Flame Retardance, Curing Behavior and Mechanical Property.” Polym. Chem., 7 (17) 3003–3012. https://doi.org/10.1039/c6py00434b (2016)

    Article  CAS  Google Scholar 

  12. Zhao, X, Babu, HV, Llorca, J, Wang, DY, “Impact of Halogen-Free Flame Retardant with Varied Phosphorus Chemical Surrounding on the Properties of Diglycidyl Ether of Bisphenol-A Type Epoxy Resin: Synthesis, Fire Behaviour, Flame-Retardant Mechanism and Mechanical Properties.” RSC Adv., 6 (64) 59226–59236. https://doi.org/10.1039/c6ra13168a (2016)

    Article  CAS  Google Scholar 

  13. Chruściel, JJ, Leśniak, E, “Modification of Epoxy Resins with Functional Silanes, Polysiloxanes, Silsesquioxanes, Silica and Silicates.” Prog. Polym. Sci., 14 67–121. https://doi.org/10.1016/j.progpolymsci.2014.08.001 (2015)

    Article  CAS  Google Scholar 

  14. Zhang, RL, et al. “Enhanced Mechanical Properties of Multiscale Carbon Fiber/Epoxy Composites by Fiber Surface Treatment with Graphene Oxide/Polyhedral Oligomeric Silsesquioxane.” Compos. Part A Appl. Sci. Manuf., 84 455–463. https://doi.org/10.1016/j.compositesa.2016.02.021 (2016)

    Article  CAS  Google Scholar 

  15. Laik, S, Galy, J, Gérard, JF, Monti, M, Camino, G, “Fire Behaviour and Morphology of Epoxy Matrices Designed for Composite Materials Processed by Infusion.” Polym. Degrad. Stab., 127 44–55. https://doi.org/10.1016/j.polymdegradstab.2015.11.027 (2016)

    Article  CAS  Google Scholar 

  16. Zang, L, Wagner, S, Ciesielski, M, Müller, P, Döring, M, “Novel Star-Shaped and Hyperbranched Phosphorus-Containing Flame Retardants in Epoxy Resins.” Polym. Adv. Technol., 22 (7) 1182–1191. https://doi.org/10.1002/pat.1990 (2011)

    Article  CAS  Google Scholar 

  17. Qiu, Y, Qian, L, Xi, W, “Flame-Retardant Effect of a Novel Phosphaphenanthrene/Triazine-trione Bi-group Compound on an Epoxy Thermoset and Its Pyrolysis Behaviour.” RSC Adv., 6 (61) 56018–56027. https://doi.org/10.1039/c6ra10752d (2016)

    Article  CAS  Google Scholar 

  18. Qian, L, Ye, L, Qiu, Y, Qu, S, “Thermal Degradation Behavior of the Compound Containing Phosphaphenanthrene and Phosphazene Groups and Its Flame Retardant Mechanism on Epoxy Resin.” Polymer (Guildf), 52 (24) 5486–5493. https://doi.org/10.1016/j.polymer.2011.09.053 (2011)

    Article  CAS  Google Scholar 

  19. Rakotomalala, M, Ciesielski, M, Zevaco, T, Doering, M, “New Phosphacyclic Molecules and Their Application as Flame Retardants for Epoxy Resins.” Phosphorus Sulfur Silicon Relat. Elem., 186 (4) 989–996. https://doi.org/10.1080/10426507.2010.533395 (2011)

    Article  CAS  Google Scholar 

  20. Klinkowski, C, Wagner, S, Ciesielski, M, Döring, M, “Bridged Phosphorylated Diamines: Synthesis, Thermal Stability and Flame Retarding Properties in Epoxy Resins.” Polym. Degrad. Stab., 106 122–128. https://doi.org/10.1016/j.polymdegradstab.2014.04.002 (2014)

    Article  CAS  Google Scholar 

  21. Wang, W, et al. “Fabrication of LDH Nanosheets on β-FeOOH Rods and Applications for Improving the Fire Safety of Epoxy Resin.” Compos. Part A Appl. Sci. Manuf., 80 259–269. https://doi.org/10.1016/j.compositesa.2015.10.031 (2016)

    Article  CAS  Google Scholar 

  22. Kalali, EN, Wang, X, Wang, DY, “Functionalized Layered Double Hydroxide-Based Epoxy Nanocomposites with Improved Flame Retardancy and Mechanical Properties.” J. Mater. Chem. A, 3 (13) 6819–6826. https://doi.org/10.1039/c5ta00010f (2015)

    Article  CAS  Google Scholar 

  23. Kalali, EN, Wang, X, Wang, DY, “Synthesis of a Fe3O4 Nanosphere@Mg-Al Layered-Double-Hydroxide Hybrid and Application in the Fabrication of Multifunctional Epoxy Nanocomposites.” Ind. Eng. Chem. Res., 55 (23) 6634–6642. https://doi.org/10.1021/acs.iecr.5b04873 (2016)

    Article  CAS  Google Scholar 

  24. Kalali, EN, Wang, X, Wang, DY, “Multifunctional Intercalation in Layered Double Hydroxide: Toward Multifunctional Nanohybrids for Epoxy Resin.” J. Mater. Chem. A, 4 (6) 2147–2157. https://doi.org/10.1039/c5ta09482h (2016)

    Article  CAS  Google Scholar 

  25. Li, C, Wan, J, Kalali, EN, Fan, H, Wang, DY, “Synthesis and Characterization of Functional Eugenol Derivative Based Layered Double Hydroxide and Its Use as a Nanoflame-Retardant in Epoxy Resin.” J. Mater. Chem. A, 3 (7) 3471–3479. https://doi.org/10.1039/c4ta05740f (2015)

    Article  CAS  Google Scholar 

  26. Huang, YW, Song, SQ, Yang, Y, Cao, K, Yang, JX, Chang, GJ, “Decomposable Double-Walled Hybrid Nanorods: Formation Mechanism and Their Effect on Flame Retardancy of Epoxy Resin Composites.” J. Mater. Chem. A, 3 (31) 15935–15943. https://doi.org/10.1039/c5ta02149a (2015)

    Article  CAS  Google Scholar 

  27. Yang, S, Wang, J, Huo, S, Cheng, L, Wang, M, “The Synergistic Effect of Maleimide and Phosphaphenanthrene Groups on a Reactive Flame-Retarded Epoxy Resin System.” Polym. Degrad. Stab., 115 63–69. https://doi.org/10.1016/j.polymdegradstab.2015.02.016 (2015)

    Article  CAS  Google Scholar 

  28. Xiong, Y, Jiang, Z, Xie, Y, Zhang, X, Xu, W, “Development of a DOPO-Containing Melamine Epoxy Hardeners and Its Thermal and Flame-Retardant Properties of Cured Products.” J. Appl. Polym. Sci., 127 (6) 4352–4358. https://doi.org/10.1002/app.37635 (2013)

    Article  CAS  Google Scholar 

  29. Qian, L, et al. “Pyrolysis Route of a Novel Flame Retardant Constructed by Phosphaphenanthrene and Triazine-trione Groups and Its Flame-Retardant Effect on Epoxy Resin.” Polym. Degrad. Stab., 107 98–105. https://doi.org/10.1016/j.polymdegradstab.2014.05.007 (2014)

    Article  CAS  Google Scholar 

  30. Perret, B, et al. “A New Halogen-Free Flame Retardant Based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for Epoxy Resins and Their Carbon Fiber Composites for the Automotive and Aviation Industries.” Macromol. Mater. Eng., 296 (1) 14–30. https://doi.org/10.1002/mame.201000242 (2011)

    Article  CAS  Google Scholar 

  31. Qi, Z, Zhang, W, He, X, Yang, R, “High-Efficiency Flame Retardency of Epoxy Resin Composites with Perfect T8 Caged Phosphorus Containing Polyhedral Oligomeric Silsesquioxanes (P-POSSs).” Compos. Sci. Technol., 127 8–19. https://doi.org/10.1016/j.compscitech.2016.02.026 (2016)

    Article  CAS  Google Scholar 

  32. Zhang, W, Li, X, Yang, R, “Study on Flame Retardancy of TGDDM Epoxy Resins Loaded with DOPO-POSS Compound and OPS/DOPO Mixture.” Polym. Degrad. Stab., 99 (1) 118–126. https://doi.org/10.1016/j.polymdegradstab.2013.11.015 (2014)

    Article  CAS  Google Scholar 

  33. Liu, C, et al. “Modification of Epoxy Resin Through the Self-Assembly of a Surfactant-like Multi-Element Flame Retardant.” J. Mater. Chem. A, 4 (9) 3462–3470. https://doi.org/10.1039/c5ta07115a (2016)

    Article  CAS  Google Scholar 

  34. Tesoro, GC, “Chemical Modification of Polymers with Flame-Retardant Compounds.” J. Polym. Sci. Macromol. Rev., 13 283–353. https://doi.org/10.1002/pol.1978.230130106 (1978)

    Article  CAS  Google Scholar 

  35. Jian, R, Wang, P, Duan, W, Wang, J, Zheng, X, Weng, J, “Synthesis of a Novel P/N/S-Containing Flame Retardant and Its Application in Epoxy Resin: Thermal Property, Flame Retardance, and Pyrolysis Behavior.” Ind. Eng. Chem. Res., 55 (44) 11520–11527. https://doi.org/10.1021/acs.iecr.6b03416 (2016)

    Article  CAS  Google Scholar 

  36. Tian, N, Gong, J, Wen, X, Yao, K, Tang, T, “Synthesis and Characterization of a Novel Organophosphorus Oligomer and Its Application in Improving Flame Retardancy of Epoxy Resin.” RSC Adv., 4 (34) 17607–17614. https://doi.org/10.1039/c4ra01525h (2014)

    Article  CAS  Google Scholar 

  37. Yang, X, Wang, C, Xia, J, Mao, W, Li, S, “Study on Synthesis of Novel Phosphorus-Containing Flame Retardant Epoxy Curing Agents from Renewable Resources and the Comprehensive Properties of Their Combined Cured Products.” Prog. Org. Coat., 110 195–203. https://doi.org/10.1016/j.porgcoat.2017.01.012 (2017)

    Article  CAS  Google Scholar 

  38. Yang, S, Zhang, Q, Hu, Y, “Synthesis of a Novel Flame Retardant Containing Phosphorus, Nitrogen and Boron and Its Application in Flame-Retardant Epoxy Resin.” Polym. Degrad. Stab., 133 358–366. https://doi.org/10.1016/j.polymdegradstab.2016.09.023 (2016)

    Article  CAS  Google Scholar 

  39. Fang, F, et al. “A Bio-based Ionic Complex with Different Oxidation States of Phosphorus for Reducing Flammability and Smoke Release of Epoxy Resins.” Compos. Commun., 17 104–108. https://doi.org/10.1016/j.coco.2019.11.011 (2020)

    Article  Google Scholar 

  40. Liu, Y, et al. “Effect of Phosphorus-Containing Inorganic-Organic Hybrid Coating on the Flammability of Cotton Fabrics: Synthesis, Characterization and Flammability.” Chem. Eng. J., 294 167–175. https://doi.org/10.1016/j.cej.2016.02.080 (2016)

    Article  CAS  Google Scholar 

  41. Lin, HJ, Liu, SR, Han, LJ, Wang, XM, Bian, YJ, Dong, LS, “Effect of a Phosphorus-Containing Oligomer on Flame-Retardant, Rheological and Mechanical Properties of Poly(lactic acid).” Polym. Degrad. Stab., 98 (7) 1389–1396. https://doi.org/10.1016/j.polymdegradstab.2013.03.025 (2013)

    Article  CAS  Google Scholar 

  42. Zhao, P, et al. “Renewable Vanillin Based Flame Retardant for Poly(lactic acid): A Way to Enhance Flame Retardancy and Toughness Simultaneously.” RSC Adv., 8 (73) 42189–42199. https://doi.org/10.1039/c8ra08531e (2018)

    Article  CAS  Google Scholar 

  43. Liang, B, Hong, X, Zhu, M, Gao, C, Wang, C, Tsubaki, N, “Synthesis of Novel Intumescent Flame Retardant Containing Phosphorus, Nitrogen and Boron and Its Applicaton in Polyethylene.” Polym. Bull., 72 (11) 2967–2978. https://doi.org/10.1007/s00289-015-1447-8 (2015)

    Article  CAS  Google Scholar 

  44. Rivera-Perez, C, Nouzova, M, Noriega, FG, “A Quantitative Assay for the Juvenile Hormones and Their Precursors Using Fluorescent Tags.” PLoS One, 7 (8) 1–8. https://doi.org/10.1371/journal.pone.0043784 (2012)

    Article  CAS  Google Scholar 

  45. Zhao, X, Guerrero, FR, Llorca, J, Wang, DY, “New Superefficiently Flame-Retardant Bioplastic Poly(lactic acid): Flammability, Thermal Decomposition Behavior, and Tensile Properties.” ACS Sustain. Chem. Eng., 4 (1) 202–209. https://doi.org/10.1021/acssuschemeng.5b00980 (2016)

    Article  CAS  Google Scholar 

  46. Jeng, RJ, Wang, JR, Lin, JJ, Liu, YL, Chiu, YS, Su, WC, “Flame Retardant Epoxy Polymers Using Phosphorus-Containing Polyalkylene Amines as Curing Agents.” J. Appl. Polym. Sci., 82 (14) 3526–3538. https://doi.org/10.1002/app.2215 (2001)

    Article  CAS  Google Scholar 

  47. Hafiezal, MRM, Khalina, A, Zurina, ZA, Azaman, MDM, Hanafee, ZM, “Thermal and Flammability Characteristics of Blended Jatropha Bio-Epoxy as Matrix in Carbon Fiber–Reinforced Polymer.” J. Compos. Sci., 3 (1) 6. https://doi.org/10.3390/jcs3010006 (2019)

    Article  CAS  Google Scholar 

  48. Satdive, A, Mestry, S, Borse, P, Mhaske, S, “Phosphorus- and Silicon-Containing Amino Curing Agent for Epoxy Resin.” Iran. Polym. J., 29 (5) 433–443. https://doi.org/10.1007/s13726-020-00808-6 (2020)

    Article  CAS  Google Scholar 

  49. Wang, J, Ma, C, Wang, P, Qiu, S, Cai, W, Hu, Y, “Ultra-Low Phosphorus Loading to Achieve the Superior Flame Retardancy of Epoxy Resin.” Polym. Degrad. Stab., 149 119–128. https://doi.org/10.1016/j.polymdegradstab.2018.01.024 (2018)

    Article  CAS  Google Scholar 

  50. Chen, R, Hu, K, Tang, H, Wang, J, Zhu, F, Zhou, H, “A Novel Flame Retardant Derived from DOPO and Piperazine and its Application in Epoxy Resin: Flame Retardance, Thermal Stability and Pyrolysis Behavior.” Polym. Degrad. Stab., 166 334–343. https://doi.org/10.1016/j.polymdegradstab.2019.06.011 (2019)

    Article  CAS  Google Scholar 

  51. Sonnier, R, et al. “Flame Retardancy of Phosphorus-Containing Ionic Liquid Based Epoxy Networks.” Polym. Degrad. Stab., 134 186–193. https://doi.org/10.1016/j.polymdegradstab.2016.10.009 (2016)

    Article  CAS  Google Scholar 

  52. Mestry, S, Mhaske, ST, “Synthesis of Epoxy Resins using Phosphorus-based Precursors for Flame-Retardant Coating.” J. Coat. Technol. Res., 16 (3) 807–818. https://doi.org/10.1007/s11998-018-00157-3 (2019)

    Article  CAS  Google Scholar 

  53. Zhang, Q, et al. “A DOPO Based Reactive Flame Retardant Constructed by Multiple Heteroaromatic Groups and Its Application on Epoxy Resin: Curing Behavior, Thermal Degradation and Flame Retardancy.” Polym. Degrad. Stab., 167 10–20. https://doi.org/10.1016/j.polymdegradstab.2019.06.020 (2019)

    Article  CAS  Google Scholar 

  54. Zhao, B, Liu, PW, Xiong, KK, Liu, HH, Zhao, PH, Liu, YQ, “Impacts of Multi-Element Flame Retardants on Flame Retardancy, Thermal Stability, and Pyrolysis Behavior of Epoxy Resin.” Polym. Degrad. Stab., 167 217–227. https://doi.org/10.1016/j.polymdegradstab.2019.07.004 (2019)

    Article  CAS  Google Scholar 

  55. Schwarzer, M, et al. “Phosphorus-Containing Polymer Flame Retardants for Aliphatic Polyesters.” Macromol. Mater. Eng., 303 (2) 1–16. https://doi.org/10.1002/mame.201700512 (2018)

    Article  CAS  Google Scholar 

  56. Cromwell, B, Levenson, A, Levine, M, “Thermogravimetric Analysis of Aromatic Boronic Acids for Potential Flame Retardant Applications.” Thermochim. Acta, 683 178476. https://doi.org/10.1016/j.tca.2019.178476 (2020)

    Article  CAS  Google Scholar 

  57. Huo, S, et al. “A Liquid Phosphorus-Containing Imidazole Derivative as Flame-retardant Curing Agent for Epoxy Resin with Enhanced Thermal Latency, Mechanical, and Flame-Retardant Performances.” J. Hazard. Mater., 386 121984. https://doi.org/10.1016/j.jhazmat.2019.121984 (2020)

    Article  CAS  Google Scholar 

  58. Vlad-Bubulac, T, Hamciuc, C, Petreus, O, “Synthesis and Properties of Some Phosphorus-Containing Polyesters.” High Perform. Polym., 18 (3) 255–264. https://doi.org/10.1177/0954008306059504 (2006)

    Article  CAS  Google Scholar 

  59. Patil, DM, Phalak, GA, Mhaske, ST, “Design and Synthesis of Bio-based UV Curable PU Acrylate Resin from Itaconic Acid for Coating Applications.” Des. Monomers Polym., 20 (1) 269–282. https://doi.org/10.1080/15685551.2016.1231045 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mhaske.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naiker, V.E., Phalak, G.A., Patil, D.A. et al. Synthesis of phosphorous-containing bio-based curing agent for flame retardant epoxy resin system. J Coat Technol Res 20, 1325–1341 (2023). https://doi.org/10.1007/s11998-022-00747-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00747-2

Keywords

Navigation