Skip to main content
Log in

Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bio-based flame retardant magnesium phytate (Mg-Phyt) was synthesized by a facile chelation reaction and characterized. The feasibility of Mg-Phyt as flame retardant for epoxy resins was studied. In order to enhance its flame retardancy, the synergistic flame retardancy between Mg-Phyt and agricultural waste material rice husk ash (RHS) and the synergistic effects of different ratios of these two were investigated. The results show that the addition of 10 mass% Mg-Phyt can reduce the thermal decomposition rate and achieve good flame retardant performance for epoxy resins. Furthermore, the combination of Mg-Phyt with RHS can have a synergistic flame retardant effect. Among them, the synergistic effect of 5 mass% Mg-Phyt and 5 mass% RHS is the best when the two substances are added into epoxy resins. More specifically, compared to pure epoxy resins, the peak heat release rate, total heat release, peak smoke production rate, and total smoke release of epoxy resins with 5 mass% Mg-Phyt and 5 mass% RHS are reduced remarkably by 28.6%, 10.6%, 33.0%, and 7.8%, respectively. The burning rate is also reduced by 42.4%. During the combustion process, this synergistic flame retardant effect is attributed to the formation of a compact silica-rich char layer containing Si–P and P–O–C structures with strong thermal stability to hinder the heat transfer into the epoxy resins substrate and reduce flammable gas emission, so that a better flame retardancy and smoke suppression of epoxy resins can be attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yan L, Xu Z, Deng N, Chu Z. Synergistic effects of mono-component intumescent flame retardant grafted with carbon black on flame retardancy and smoke suppression properties of epoxy resins. J Therm Anal Calorim. 2019;138(2):915–27.

    Article  CAS  Google Scholar 

  2. Liu L, Xu Y, Xu M, Li Z, Hu Y, Li B. Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins. Compos Part B Eng. 2019;167:422–33.

    Article  CAS  Google Scholar 

  3. Mariappan T, Wilkie J. Flame retardant epoxy resin for electrical and electronic applications. Fire Mater. 2014;38:588–98.

    Article  CAS  Google Scholar 

  4. Anurag Y, Amit K, Kamal S, Manoj KS. Investigating the effects of amine functionalized graphene on the mechanical properties of epoxy nanocomposites. Mater Today. 2019;11:837–42.

    Google Scholar 

  5. Song Q, Wu H, Liu H, Han X, Qu H, Xu J. Synergistic flame-retardant effects of ammonium polyphosphate and AC-Fe2O3 in epoxy resin. J Therm Anal Calorim. 2019;138(2):1259–67.

    Article  CAS  Google Scholar 

  6. Zhang Y, Yu B, Wang B, Liew KM, Song L, Wang C, Hu Y. Highly effective P-P synergy of a novel DOPO-based flame retardant for epoxy resin. Ind Eng Chem Res. 2017;56:1245–55.

    Article  CAS  Google Scholar 

  7. Lu S, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  CAS  Google Scholar 

  8. Ma C, Yu B, Hong N, Pan Y, Hu W, Hu Y. Facile synthesis of a highly efficient, halogen-free, and intumescent flame retardant for epoxy resins: thermal properties, combustion behaviors, and flame-retardant mechanisms. Ind Eng Chem Res. 2016;55:10868–79.

    Article  CAS  Google Scholar 

  9. Rakotomalala M, Wagner S, Doring M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials. 2010;3:4300–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schartel B. Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials. 2010;3:4710–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qin ZL, Li D, Yang R. Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene. Polym Degrad Stab. 2016;126:117–24.

    Article  CAS  Google Scholar 

  12. Cheng X, Shi W. Synthesis and thermal properties of silicon-containing epoxy resin used for UV-curable flame-retardant coatings. J Therm Anal Calorim. 2011;103(1):303–10.

    Article  CAS  Google Scholar 

  13. Murat S, Dilem S, Dogan M. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polym Adv Technol. 2014;25:769–76.

    Article  CAS  Google Scholar 

  14. Zhang JH, Kong QH, Wang DY. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6(15):6376–86.

    Article  CAS  Google Scholar 

  15. Ding JM, Zhang Y, Zhang X, Kong QH, Zhang JH, Liu H, Zhang F. Improving the flame-retardant efficiency of layered double hydroxide with disodium phenylphosphate for epoxy resin. J Therm Anal Calorim. 2020;140(1):149–56.

    Article  CAS  Google Scholar 

  16. Kong QH, Wu T, Zhang HK, Zhang Y, Zhang MM, Si TY, Yang L, Zhang JH. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci. 2017;146:230–7.

    Article  CAS  Google Scholar 

  17. Qian L, Qiu Y, Wang J, Wang X. High-performance flame retardancy by char-cage hindering and free radical quenching effects in epoxy thermosets. Polymer. 2015;68:262–9.

    Article  CAS  Google Scholar 

  18. Yang S, Zhang Q, Hu Y. Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin. Polym Degrad Stab. 2016;133:358–66.

    Article  CAS  Google Scholar 

  19. Kong QH, Sun YL, Zhang CJ, Guan HM, Zhang JH, Wang DY, Zhang F. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Compos Sci Technol. 2019;182:107748.

    Article  CAS  Google Scholar 

  20. Ren H, Sun J, Wu B, Zhou Q. Synthesis and properties of a phosphorus-containing flame retardant epoxy resin based on bisphenoxy (3-hydroxy) phenyl phosphine oxide. Polym Degrad Stab. 2007;92:956–61.

    Article  CAS  Google Scholar 

  21. Alexander S, Sebastian S, Wiebke L, Olaf W, Manfred D. Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO. J Appl Polym Sci. 2008;105:685–96.

    Google Scholar 

  22. Perret B, Schartel B, Stoss K, Ciesielski M, Diederichs J, Doring M, Krämer J, Altstädt V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur Polym J. 2011;47:1081–9.

    Article  CAS  Google Scholar 

  23. Salmeia KA, Gaan SJ. An overview of some recent advances in DOPO derivatives: chemistry and flame retardant applications. Polym Degrad Stab. 2015;113:119–34.

    Article  CAS  Google Scholar 

  24. Zhao C, Li Y, Xing Y, He D, Yue J. Flame retardant and mechanical properties of epoxy composites containing APP-PSt core-shell microspheres. Appl Polym Sci. 2014;131(9):40218.

    Article  CAS  Google Scholar 

  25. Tan Y, Shao Z, Yu L, Xu Y, Rao W, Chen L, Wang Y. Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: thermal stability, flame retardance and smoke suppression. Polym Degrad Stab. 2016;131:62–70.

    Article  CAS  Google Scholar 

  26. Zhang Z, Ma Z, Leng Q, Wang Y. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions. Int J Biol Macromol. 2019;140:303–10.

    Article  CAS  PubMed  Google Scholar 

  27. Yang W, Tawiah B, Yu C, Qian Y, Wang L, Yuen ACY, Zhu SE, Hu EZ, Chen TBY, Yu B, Lu H. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos Part A Appl Sci Manuf. 2018;110:227–36.

    Article  CAS  Google Scholar 

  28. Cheng L, Wu W, Meng W, Xu S, Han H, Yu Y, Qu H, Xu J. Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants. J Appl Polym Sci. 2018;135(33):46601.

    Article  CAS  Google Scholar 

  29. Costesab L, Laoutida F, Dumazertc L, José-Marie L, Sylvain B, Christian D, Philippe D. Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polym Degrad Stab. 2015;119:217–27.

    Article  CAS  Google Scholar 

  30. Attia NF, Lee SM, Kim HJ, Geckeler KE. Nanoporous carbon-templated silica nanoparticles: preparation, effect of different carbon precursors, and their hydrogen storage adsorption. Microporous Mesoporous Mater. 2013;173:139–46.

    Article  CAS  Google Scholar 

  31. Saraswathy V, Hawon S. Corrosion performance of rice husk ash blended concrete. Constr Build Mater. 2007;21:1779–84.

    Article  Google Scholar 

  32. Arora S, Kumar M, Kumar M. Preparation and thermal stability of poly(methyl methacrylate)/rice husk silica/triphenylphosphine nanocomposites: assessment of degradation mechanism using model-free kinetics. J Compos Mater. 2012;47:2027–38.

    Article  CAS  Google Scholar 

  33. Almiron J, Roudet F, Duquesne S. Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites. J Fire Sci. 2019;37:434–51.

    Article  CAS  Google Scholar 

  34. Wu W, He H, Liu T, Wei R, Cao X, Sun Q, Venkatesh. Synergetic enhancement on flame retardancy by melamine phosphate modified lignin in rice husk ash filled P34HB biocomposites. Compos Sci Technol. 2018;168:246–54.

    Article  CAS  Google Scholar 

  35. Liu Y, Chiu Y, Wu C. Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins’ thermal stability and flame retardancy. J Appl Polym Sci. 2003;87(3):404–11.

    Article  CAS  Google Scholar 

  36. He Z, Wayne H, Zhang T, Paul MB. Preparation and FT-IR characterization of metal phytate compounds. J Environ Qual. 2006;35:1319–28.

    Article  CAS  PubMed  Google Scholar 

  37. Xue Z, Zhang Y, Li G, Wang J, Zhao W, Mu T. Niobium phytate prepared from phytic acid and NbCl5: a highly efficient and heterogeneous acid catalyst. Catal Sci Technol. 2016;6:1070–6.

    Article  CAS  Google Scholar 

  38. Sun P, Li Z, Song M, Wang S, Yin X, Wang Y. Preparation and characterization of zirconium phytate as a novel solid intermediate temperature proton conductor. Mater Lett. 2017;191:161–4.

    Article  CAS  Google Scholar 

  39. Xu Y, Sun X, Shen R, Wang Z, Wang Q. Thermal behavior and smoke characteristics of glass/epoxy laminate and its foam core sandwich composite. J Therm Anal Calorim. 2020;141(3):1173–82.

    Article  CAS  Google Scholar 

  40. Nour FA, Heshiam AA, Mohamed AH. Synergistic study of carbon nanotubes, rice husk ash and flame retardant materials on the flammability of polystyrene nanocomposites. Mater Today. 2015;2:3998–4005.

    Google Scholar 

  41. Liu Y, Wei W, Hsu KY, Ho WH. Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta. 2004;412(1–2):139–47.

    Article  CAS  Google Scholar 

  42. Shen R, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang Q. Cone calorimeter analysis of flame retardant poly(methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2017;128(3):1443–51.

    Article  CAS  Google Scholar 

  43. Ahmed L, Zhang B, Shen R, Agnew RJ, Park H, Cheng Z, Mannan MS, Wang Q. Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test. J Therm Anal Calorim. 2018;132(3):1853–65.

    Article  CAS  Google Scholar 

  44. Xu Y, Lv C, Shen R, Wang Z, Wang Q. Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite. J Therm Anal Calorim. 2019;136(3):1237–47.

    Article  CAS  Google Scholar 

  45. Xu Y, Lv C, Shen R, Wang Z, Wang Q. Comparison of thermal and fire properties of carbon/epoxy laminate composites manufactured using two forming processes. Polym Compos. 2020;9(41):3778–86.

    Article  CAS  Google Scholar 

  46. Zheng Z, Liu S, Wang B, Yang T, Cui X, Wang H. Preparation of a novel phosphorus- and nitrogen-containing flame retardant and its synergistic effect in the intumescent flame-retarding polypropylene system. Polym Compos. 2015;36:1606–19.

    Article  CAS  Google Scholar 

  47. Chen Z, Jiang M, Chen Z, Chen T, Yu Y, Jiang J. Preparation and characterization of a microencapsulated flame retardant and its flame-retardant mechanism in unsaturated polyester resins. Powder Technol. 2019;354:71–81.

    Article  CAS  Google Scholar 

  48. Zhao C, Liu Y, Wang D, Wang D, Wang Y. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym Degrad Stab. 2008;93:1323–31.

    Article  CAS  Google Scholar 

  49. Bettina D, Karen AW, Daniel H, Rolf M, Bernhard S. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab. 2013;98:1495–505.

    Article  CAS  Google Scholar 

  50. Liu Y, Zhao J, Deng C, Chen L, Wang D, Wang Y. Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system. Ind Eng Chem Res. 2011;50:2047–54.

    Article  CAS  Google Scholar 

  51. Chen J, Zhu J. A query on the Mg 2p binding energy of MgO. Res Chem Intermed. 2019;45:947–50.

    Article  CAS  Google Scholar 

  52. Gao Y, Deng C, Du Y, Huang S, Wang Y. A novel bio-based flame retardant for polypropylene from phytic acid. Polym Degrad Stab. 2019;161:298–308.

    Article  CAS  Google Scholar 

  53. Feng C, Liang M, Zhang Y, Jiang J, Huang J, Liu H. Synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. J Anal Appl Pyrol. 2016;122:241–8.

    Article  CAS  Google Scholar 

  54. Chen W, Liu Y, Liu Y, Wang Q. Preparation of alginate flame retardant containing P and Si and its flame retardancy in epoxy resin. J Appl Polym Sci. 2017;134(48):45552.

    Article  CAS  Google Scholar 

  55. Richard HT, Artur W, Luke H. Fire retardant action of mineral fillers. Polym Degrad Stab. 2011;96:1462–9.

    Article  CAS  Google Scholar 

  56. Baine P, Khor YC, Gamble HS, Armstrong BM, Mitchell SJN. Novel materials for thermal via incorporation into SOI structures. J Mater Sci Mater Eectron. 2001;12:215–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Project of Liaoning Provincial Department of Education (JYT19065), and Natural Science Foundation of Liaoning Province (No. 20180540033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, J., Shen, R. et al. Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins. J Therm Anal Calorim 146, 153–164 (2021). https://doi.org/10.1007/s10973-020-10420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10420-8

Keywords

Navigation