Skip to main content
Log in

Improve the heat exchanger efficiency via examine the Graphene Oxide nanoparticles: a comprehensive study of the preparation and stability, predict the thermal conductivity and rheological properties, convection heat transfer and pressure drop

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, the effect of using GO/ water nanofluid as a coolant fluid in an isothermal heat transfer system was studied. At first, to evaluate the atomic bond, chemical, and surface structure of the nanoparticles, XRD-FTIR and FESEM tests were used. Two-step method was used to prepared nanofluid then DLS test was utilized to examine the stability of the nanofluid. Thermal conductivity and the dynamic viscosity were measured experimentally from 25 to 75 ℃ and volume fractions of 0–0.15%. The maximum improvement in thermal conductivity is 11.2% at 0.15% and 75 ℃. Also The dynamic viscosity increased. The validity and uncertainty of the test results were examined. The heat transfer and turbulent flow of the nanofluid under a constant temperature boundary condition were investigated between 6000 and 18,700 Reynolds numbers. Various parameters such as the pressure drop, friction factor, convection heat transfer coefficient, and Nusselt number of the turbulent flow were evaluated. According to the results, the greatest increase in the convection heat transfer coefficient of the nanofluid was 34.7% compared to that of the base fluid. Also, the greatest enhancement in the friction factor was 9.64%. It can be stated that the improvement of the convection heat transfer coefficient dominantly affects the pressure drop so this nanofluid can be used as a coolant fluid in industrial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jafaryar M, Sheikholeslami M, Li Z. CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technol. 2018;336:131–43.

    Article  CAS  Google Scholar 

  2. Akyürek EF, Geliş K, Şahin B, Manay E. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results Phys. 2018;9:376–89.

    Article  Google Scholar 

  3. Liu S, Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev. 2013;19:64–81.

    Article  CAS  Google Scholar 

  4. Dogan M, İgci AA. An experimental comparison of delta winglet and novel type vortex generators for heat transfer enhancement in a rectangular channel and flow visualization with stereoscopic PIV. Int J Heat Mass Transf. 2021;164:120592.

    Article  Google Scholar 

  5. Zhu C-Y, Guo Y, Yang H-Q, Ding B, Duan X-Y. Investigation of the flow and heat transfer characteristics of helium gas in printed circuit heat exchangers with asymmetrical airfoil fins. Appl Therm Eng. 2021;186:116478.

    Article  CAS  Google Scholar 

  6. Mousa MH, Miljkovic N, Nawaz K. Review of heat transfer enhancement techniques for single phase flows. Renew Sustain Energy Rev. 2021;137:110566.

    Article  Google Scholar 

  7. Ranjbarzadeh R, Meghdadi Isfahani AH, Hojaji M. Experimental investigation of heat transfer and friction coefficient of the water/graphene oxide nanofluid in a pipe containing twisted tape inserts under air cross-flow. Exp Heat Transf. 2018;31:373–90.

    Article  CAS  Google Scholar 

  8. Mozaffari M, Karimipour A, D’Orazio A. Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside. J Therm Anal Calorim. 2019;137:229–43.

    Article  CAS  Google Scholar 

  9. Khan IA. Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles. Int Commun Heat Mass Transf. 2021;120:104910.

    Article  CAS  Google Scholar 

  10. Choi SU, Eastman JA. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in, Argonne National Lab., IL (United States); 1995

  11. Pandey RP, Shukla G, Manohar M, Shahi VK. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: an overview. Adv Coll Interface Sci. 2017;240:15–30.

    Article  CAS  Google Scholar 

  12. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–60.

    Article  CAS  PubMed  Google Scholar 

  13. Bashirnezhad K, Ghavami M, Alrashed AA. Experimental investigations of nanofluids convective heat transfer in different flow regimes: A review. J Mol Liq. 2017;244:309–21.

    Article  CAS  Google Scholar 

  14. Qi C, Luo T, Liu M, Fan F, Yan Y. Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Conversi Manag. 2019;197:111877.

    Article  CAS  Google Scholar 

  15. Sadeghinezhad E, Mehrali M, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl Therm Eng. 2016;100:775–87.

    Article  CAS  Google Scholar 

  16. Ranjbarzadeh R, Karimipour A, Afrand M, Isfahani AHM, Shirneshan A. Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe. Appl Therm Eng. 2017;126:538–47.

    Article  CAS  Google Scholar 

  17. Prasad PD, Gupta A. Experimental investigation on enhancement of heat transfer using Al2O3/water nanofluid in a u-tube with twisted tape inserts. Int Commun Heat Mass Transf. 2016;75:154–61.

    Article  CAS  Google Scholar 

  18. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Alehashem MS, Dahari M, Kazi S. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers Manage. 2016;114:38–49.

    Article  CAS  Google Scholar 

  19. Devireddy S, Mekala CSR, Veeredhi VR. Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. Int Commun Heat Mass Transfer. 2016;78:121–6.

    Article  CAS  Google Scholar 

  20. Kumar V, Tiwari AK, Ghosh SK. Characterization and performance of nanofluids in plate heat exchanger. Mater Today: Proc. 2017;4:4070–8.

    Google Scholar 

  21. Sarafraz M, Nikkhah V, Nakhjavani M, Arya A. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp Thermal Fluid Sci. 2018;91:509–19.

    Article  CAS  Google Scholar 

  22. Kumar NR, Bhramara P, Addis BM, Sundar LS, Singh MK, Sousa AC. Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. Int Commun Heat Mass Transfer. 2017;81:155–63.

    Article  CAS  Google Scholar 

  23. Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. United States: John Wiley & Sons; 2011.

    Google Scholar 

  24. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11:151–70.

    Article  CAS  Google Scholar 

  25. Bergman TL, Incropera FP, Lavine AS, Dewitt DP. Introduction to heat transfer. United States: John Wiley & Sons; 2011.

    Google Scholar 

  26. Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  27. Winterton RH. Where did the Dittus and Boelter equation come from? Int J Heat Mass Transf. 1998;41:809–10.

    Article  CAS  Google Scholar 

  28. Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Func Mater. 2011;21:2978–88.

    Article  CAS  Google Scholar 

  29. Javidparvar AA, Naderi R, Ramezanzadeh B, Bahlakeh G. Graphene oxide as a pH-sensitive carrier for targeted delivery of eco-friendly corrosion inhibitors in chloride solution: experimental and theroretical investigations. J Ind Eng Chem. 2019;72:196–213.

    Article  CAS  Google Scholar 

  30. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–24.

    Article  CAS  PubMed  Google Scholar 

  31. El Ghandoor H, Zidan H, Khalil MM, Ismail M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci. 2012;7:5734–45.

    Google Scholar 

  32. Ranjbarzadeh R, Akhgar A, Musivand S, Afrand M. Effects of graphene oxide-silicon oxide hybrid nanomaterials on rheological behavior of water at various time durations and temperatures: synthesis, preparation and stability. Powder Technol. 2018;335:375–87.

    Article  CAS  Google Scholar 

  33. Ranjbarzadeh R, Isfahani AM, Afrand M, Karimipour A, Hojaji M. An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: applicable as a heat exchanger. Appl Therm Eng. 2017;125:69–79.

    Article  CAS  Google Scholar 

  34. Newton RG Scattering theory of waves and particles. Springer Science & Business Media. 2013

  35. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  36. Ahmadi MH, Mohseni-Gharyehsafa B, Ghazvini M, Goodarzi M, Jilte RD, Kumar R. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J Therm Anal Calorim. 2020;139(4):2585–99.

    Article  CAS  Google Scholar 

  37. Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;273:88–98.

    Article  CAS  Google Scholar 

  38. Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AA, Shabani GAS, Goodarzi M. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2018;29(2):273–82.

    Article  CAS  Google Scholar 

  39. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2021;143(6):4149–67.

    Article  CAS  Google Scholar 

  40. Bagherzadeh SA, Jalali E, Sarafraz MM, Akbari OA, Karimipour A, Goodarzi M, Bach QV. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Methods Heat Fluid Flow. 2019

  41. Bagherzadeh SA, D’Orazio A, Karimipour A, Goodarzi M, Bach QV. A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: outputs predicted analytically instead of numerically to more accuracy and less costs. Phys A. 2019;521:406–15.

    Article  CAS  Google Scholar 

  42. Sarafraz MM, Tian Z, Tlili I, Kazi S, Goodarzi M. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. J Therm Anal Calorim. 2020;139(4):2435–45.

    Article  CAS  Google Scholar 

  43. Khosravi R, Rabiei S, Khaki M, Safaei MR, Goodarzi M. Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. J Therm Anal Calorim. 2021;1–19.

  44. Abuldrazzaq T, Togun H, Alsulami H, Goodarzi M, Safaei MR. Heat transfer improvement in a double backward-facing expanding channel using different working fluids. Symmetry. 2020;12(7):1088.

    Article  CAS  Google Scholar 

  45. Peng Y, Parsian A, Khodadadi H, Akbari M, Ghani K, Goodarzi M, Bach QV. Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3–Cu nanoparticles dispersed in ethylene glycol. Phys A: Stat Mech Appl. 2020;549:124015.

    Article  CAS  Google Scholar 

  46. Ahmadi AA, Arabbeiki M, Ali HM, Goodarzi M, Safaei MR. Configuration and optimization of a minichannel using water–alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. Nanomaterials. 2020;10(5):901.

    Article  CAS  PubMed Central  Google Scholar 

  47. Dadsetani R, Sheikhzadeh GA, Safaei MR, Leon AS, Goodarzi M. Cooling enhancement and stress reduction optimization of disk-shaped electronic components using nanofluids. Symmetry. 2020;12(6):931.

    Article  CAS  Google Scholar 

  48. Abdulrazzaq T, Togun H, Goodarzi M, Kazi SN, Ariffin MKA, Adam NM, Hooman K. Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction. J Therm Anal Calorim. 2020;141(1):373–85.

    Article  CAS  Google Scholar 

  49. Akkoli KM, Banapurmath NR, Shivashimpi MM, Soudagar MEM, Badruddin IA, Alazwari MA, Yaliwal VS, Mujtaba MA, Akram N, Goodarzi M, Safaei MR. Effect of injection parameters and producer gas derived from redgram stalk on the performance and emission characteristics of a diesel engine. Alex Eng J. 2021;60(3):3133–42.

    Article  Google Scholar 

  50. Safaei MR, Tlili I, Gholamalizadeh E, Abbas T, Alkanhal TA, Goodarzi M, Dahari M. Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension. J Therm Anal Calorim. 2021;143(3):2453–62.

    Article  CAS  Google Scholar 

  51. Nguyen Q, Beni MH, Parsian A, Malekahmadi O, Karimipour A. Discrete ordinates thermal radiation with mixed convection to involve nanoparticles absorption, scattering and dispersion along radiation beams through the nanofluid. J Therm Anal Calorim. 2021;143(3):2801–24.

    Article  CAS  Google Scholar 

  52. Zheng Y, Zhang X, Nouri M, Amini A, Karimipour A, Hekmatifar M, Sabetvand R, Ngooyen Q, Karimipour A. Atomic rheology analysis of the external magnetic field effects on nanofluid in non-ideal microchannel via molecular dynamic method. J Therm Anal Calorim. 2021;143(2):1655–63.

    Article  CAS  Google Scholar 

  53. Yan SR, Kalbasi R, Parvin A, Tian XX, Karimipour A. Comparison of Nusselt number and stream function in tall and narrow enclosures in the mixed convection of hybrid nanofluid. J Therm Anal Calorim. 2021;143:1599–609.

    Article  CAS  Google Scholar 

  54. Niknejadi M, Afrand M, Karimipour A, Shahsavar A, Isfahani AHM. Experimental investigation of the hydrothermal aspects of water–Fe 3 O 4 nanofluid inside a twisted tube. J Therm Anal Calorim. 2020;143(1):801–10.

    Article  CAS  Google Scholar 

  55. Liu X, Toghraie D, Hekmatifar M, Akbari OA, Karimipour A, Afrand M. Numerical investigation of nanofluid laminar forced convection heat transfer between two horizontal concentric cylinders in the presence of porous medium. J Therm Anal Calorim. 2020;141(5):2095–108.

    Article  CAS  Google Scholar 

  56. Zheng Y, Yaghoubi S, Dezfulizadeh A, Aghakhani S, Karimipour A, Tlili I. Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J Therm Anal Calorim. 2020;141(1):635–48.

    Article  CAS  Google Scholar 

  57. Yan SR, Kalbasi R, Nguyen Q, Karimipour A. Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: a comprehensive modeling and experimental study. J Mol Liq. 2020;308:113058.

    Article  CAS  Google Scholar 

  58. Tian XX, Kalbasi R, Qi C, Karimipour A, Huang HL. Efficacy of hybrid nano-powder presence on the thermal conductivity of the engine oil: an experimental study. Powder Technol. 2020;369:261–9.

    Article  CAS  Google Scholar 

  59. Salimpour MR, Darvanjooghi MHK, Abdollahi A, Karimipour A, Goodarzi M. Providing a model for Csf according to pool boiling convection heat transfer of water/ferrous oxide nanofluid using sensitivity analysis. Int J Numer Method Heat Fluid Flow. 2019;30(6):2867–81.

    Article  Google Scholar 

  60. Tian Z, Bagherzadeh SA, Ghani K, Karimipour A, Abdollahi A, Bahrami M, Safaei MR. Nonlinear function estimation fuzzy system (NFEFS) as a novel statistical approach to estimate nanofluids’ thermal conductivity according to empirical data. Int J Numer Method Heat Fluid Flow. 2019;30(6):3267–81.

    Article  Google Scholar 

  61. Yan SR, Shirani N, Zarringhalam M, Toghraie D, Nguyen Q, Karimipour A. Prediction of boiling flow characteristics in rough and smooth microchannels using molecular dynamics simulation: Investigation the effects of boundary wall temperatures. J Mol Liq. 2020;306:112937.

    Article  CAS  Google Scholar 

  62. Ma J, Shahsavar A, Al-Rashed AA, Karimipour A, Yarmand H, Rostami S. Viscosity, cloud point, freezing point and flash point of zinc oxide/SAE50 nanolubricant. J Mol Liq. 2020;298:112045.

    Article  CAS  Google Scholar 

  63. Abu-Hamdeh NH, Alsulami RA, Alimoradi A, Karimipour A. Fluid flow and heat transfer of the two-phase solid/liquid mixture at the equilibration phase structure via MD method: Atomic value effects in a case study of energy consumption and absorbed energy. J Mol Liq. 2021;337:116384.

    Article  CAS  Google Scholar 

  64. Alazwari MA, Abu-Hamdeh NH, Nusier OK, Karimipour A. Vacancy defect influence on nanofluid flow and absorbed thermal energy in a nanochannel affected by universal force field via composed approach of embedded atom model/molecular dynamics method. J Mol Liq. 2021;333:115927.

    Article  CAS  Google Scholar 

  65. Bantan RA, Abu-Hamdeh NH, Nusier OK, Karimipour A. The molecular dynamics study of aluminum nanoparticles effect on the atomic behavior of argon atoms inside zigzag nanochannel. J Mol Liq. 2021;331:115714.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ramin Ranjbarzadeh: Funding acquisition; Project administration; Writing—review & editing, Alireza Akhgar: Formal analysis; Writing—review & editing; Supervision; Methodology, Roozbeh Taherialekouhi: Conceptualization; Writing—original draft, Annunziata D’Orazio: Methodology; Writing—original draft; Validation, S. Mohammad Sajadi: Resources; Writing—original draft, Ferial Ghaemi: Writing—original draft; Validation; Conceptualization, Dumitru Baleanu: Resources; Writing—original draft; Data curation; Supervision.

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbarzadeh, R., Akhgar, A., Taherialekouhi, R. et al. Improve the heat exchanger efficiency via examine the Graphene Oxide nanoparticles: a comprehensive study of the preparation and stability, predict the thermal conductivity and rheological properties, convection heat transfer and pressure drop. J Therm Anal Calorim 147, 7509–7521 (2022). https://doi.org/10.1007/s10973-021-11002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11002-y

Keywords

Navigation